Present research paper investigates the transient laminar free convective supercritical carbon dioxide flow past a semi-infinite vertical cylinder using numerical methods. Two new thermodynamic models for the supercritical fluid (SCF) flow are considered. Based on these models, for supercritical carbon dioxide, two new equations for thermal expansion coefficient are obtained on the basis of Redlich–Kwong equation of state (RK-EOS) and Van der Waals equation of state (VW-EOS). Based on the calculated values of thermal expansion coefficient, it is shown that not only RK-EOS is closer to experimental values but also gives greater accuracy when compared to VW-EOS validating RK-EOS as suitable model for predicting natural convective properties of carbon dioxide under supercritical condition. The governing equations of SCF flow are solved numerically using Crank–Nicolson implicit finite difference scheme. Numerical simulations are performed for carbon dioxide in the region of its critical point. Results in subcritical, supercritical, and near-critical regions are shown graphically and discussed for different physical parameters. From the obtained numerical results, it is clear that the steady-state time increases for the increasing values of reduced temperature and reduced pressure for carbon dioxide in supercritical region.

References

References
1.
Sparrow
,
E. M.
, and
Gregg
,
J. L.
,
1956
, “
Laminar Free Convection Heat Transfer From the Outer Surface of a Vertical Circular Cylinder
,”
ASME J. Heat Transfer
,
78
(
8
), pp.
1823
1829
.
2.
Lee
,
H. R.
,
Chen
,
T. S.
, and
Armaly
,
B. F.
,
1988
, “
Natural Convection Along Slender Vertical Cylinders With Variable Surface Temperature
,”
ASME J. Heat Transfer
,
110
(
1
), pp.
103
108
.
3.
Semih
,
Ö.
,
2009
,
Handbook of Food Analysis Instruments
,
CRC Press
, Boca Raton, FL.
4.
Kiran
,
E.
,
Debenedetti
,
P. G.
, and
Peters
,
C. J.
,
2000
,
Supercritical Fluids: Fundamentals and Applications
(NATO Science Series), Kluwer Academic Publisher, Dordrecht, The Netherlands.
5.
McHugh
,
M. A.
, and
Krukonis
,
V. J.
,
1994
,
Supercritical Fluid Extraction, Principles and Practice
,
2nd ed.
,
Butterworth-Heinemann
,
Boston, MA
.
6.
Nishikawa
,
K.
, and
Ito
,
T.
,
1969
, “
An Analysis of Free-Convective Heat Transfer From an Isothermal Vertical Plate to Supercritical Fluids
,”
Int. J. Heat Mass Transfer
,
12
(
11
), pp.
1449
1463
.
7.
Muller
,
E. A.
, and
Estevez
,
L. A.
,
1990
, “
Mixing Expansivities and Grashof Number in Supercritical Fluids Using Cubic Equations of State
,”
J. Supercritical Fluids
,
3
(
3
), pp.
136
142
.
8.
Rolando
,
A.
,
2004
, “
Natural Convective Heat Transfer in Supercritical Fluids
,” Ph.D. thesis, University of Puerto Rico, San Juan, PR.
9.
Teymourtash
,
A. R.
,
Khonakdar
,
D. R.
, and
Raveshi
,
M. R.
,
2013
, “
Natural Convection on a Vertical Plate With Variable Heat Flux in Supercritical Fluids
,”
J. Supercritical Fluids
,
74
, pp.
115
127
.
10.
Khonakdar
,
D. R.
, and
Raveshi
,
M. R.
,
2016
, “
Mixed Convection on a Vertical Plate in Supercritical Fluids by Selecting the Best Equation of State
,”
J. Supercritical Fluids
,
107
, pp.
549
559
.
11.
Arai
,
Y.
,
Sako
,
T.
, and
Takebayashi
,
Y.
,
2002
,
Supercritical Fluids
,
1st ed.
,
Springer-Verlag
,
Berlin
.
12.
Brunner
,
G.
,
1994
,
Topics in Physical Chemistry
(Gas Extraction, Vol.
4
),
Springer-Verlag
,
Berlin
.
13.
Span
,
R.
, and
Wangar
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple Point Temperature to 1100 K at Pressures Up to 800 MPa
,”
J. Phy. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.
14.
Liao
,
S. M.
, and
Zhao
,
T. S.
,
2002
, “
Measurements of Heat Transfer Coefficients From Supercritical Carbon Dioxide Flowing in Horizontal Mini/Micro Channels
,”
ASME J. Heat Transfer
,
124
(
3
), pp.
413
420
.
15.
Jiang
,
P.-X.
,
Zhang
,
Y.
, and
Shi
,
R.-F.
,
2008
, “
Experimental and Numerical Investigation of Convection Heat Transfer of CO2 at Supercritical Pressures in a Vertical Mini-Tube
,”
Int. J. Heat Mass Transfer
,
51
(
11–12
), pp.
3052
3056
.
16.
Long
,
Z. Q.
,
Zhang
,
P.
, and
Shen
,
B.
,
2015
, “
Natural Convection Heat Transfer of Supercritical Binary Fluid in a Long Closed Vertical Cylinder
,”
Int. J. Heat Mass Transfer
,
80
, pp.
551
561
.
17.
Soave
,
G.
,
1993
, “
20 Years of Redlich-Kwong Equation of State
,”
Fluid Phase Equilib.
,
82
, pp.
345
359
.
18.
Blundell
,
S. J.
, and
Blundell
,
K. M.
,
2006
,
Concepts in Thermal Physics
,
Oxford University Press
, Oxford, UK.
19.
Rani
,
H. P.
,
Reddy
,
G. J.
, and
Kim
,
C. N.
,
2013
, “
Transient Analysis of Diffusive Chemical Reactive Species for Couple Stress Fluid Flow Over Vertical Cylinder
,”
Appl. Math. Mech.-Engl. Ed.
,
34
(
8
), pp.
985
1000
.
20.
Ganesan
,
P.
, and
Rani
,
H. P.
,
1998
, “
Transient Natural Convection Along Vertical Cylinder With Heat and Mass Transfer
,”
Heat Mass Transfer
,
33
(
5–6
), pp.
449
455
.
21.
Rani
,
H. P.
,
Reddy
,
G. J.
,
Kim
,
C. N.
, and
Rameshwar
,
Y.
,
2015
, “
Transient Couple Stress Fluid Past a Vertical Cylinder With Bejan's Heat and Mass Flow Visualization for Steady-State
,”
ASME J. Heat Transfer
,
137
(
3
), p.
032501
.
22.
NIST
,
2017
, “
Chemistry Web Book, 2017 by The U.S. Secretary of Commerce on behalf of the United States of America
,” National Institute of Standards and Technology, Gaithersburg, MD, accessed Apr. 18, 2018, http://webbook.nist.gov/
23.
Poling
,
B. E.
,
Prausnitz
,
J. M.
, and
O'Connell
,
J. P.
,
2001
,
The Properties of Gases and Liquids
,
5th ed.
,
McGraw-Hill
,
New York
.
24.
Kim
,
Y.
,
2007
, “
Equation of State for Carbon Dioxide
,”
J. Mech. Sci. Technol.
,
21
(
5
), pp.
799
804
.
25.
Hassanzadeh
,
H.
,
Pooladi-Darvish
,
M.
,
Elsharkawy
,
A. M.
,
Keith
,
D. W.
, and
Leonenko
,
Y.
,
2008
, “
Predicting PVT Data for CO2-Brine Mixtures for Black-Oil Simulation of CO2 Geological Storage
,”
Int. J. Greenhouse Gas Control
,
2
(
1
), pp.
65
77
.
26.
Giljarhus
,
K. E. T.
,
Munkejord
,
S. T.
, and
Skaugen
,
G.
,
2012
, “
Solution of the Span-Wagner Equation of State Using a Density-Energy State Function for Fluid-Dynamic Simulation of Carbon Dioxide
,”
Ind. Eng. Chem. Res.
,
51
(
2
), pp.
1006
1014
.
27.
Han
,
W. S.
, and
McPherson
,
B.
,
2008
, “
Comparison of Two Different Equations of State for Application of Carbon Dioxide Sequestration
,”
Adv. Water Resour.
,
31
(
6
), pp.
877
890
.
28.
Böttcher
,
N.
,
Taron
,
J.
,
Kolditz
,
O.
,
Park
,
C. H.
, and
Liedl
,
R.
,
2012
, “
Evaluation of Thermal Equations of State for CO2 in Numerical Simulations
,”
Environ. Earth Sci.
,
67
(
2
), pp.
481
495
.
29.
Wilhelmsen
,
Ø.
,
Skaugen
,
G.
,
Jørstad
,
O.
, and
Li
,
H.
,
2012
, “
Evaluation of SPUNG* and Other Equations of State for Use in Carbon Capture and Storage Modeling
,”
Energy Procedia
,
23
, pp.
236
245
.
30.
Yu
,
J. M.
, and
Lu
,
B. C. Y.
,
1987
, “
A Three-Parameter Cubic Equation of State for Asymmetric Mixture Density Calculations
,”
Fluid Phase Equilib.
,
34
(
1
), pp.
1
19
.
31.
Adachi
,
Y.
, and
Lu
,
B. C. Y.
,
1984
, “
Simplest Equation of State for Vapor-Liquid Equilibrium Calculation: A Modification of the Van Der Waals Equation
,”
AIChE J.
,
30
(
6
), pp.
991
993
.
32.
Ede
,
A. J.
,
1967
,
Advances in Free Convection
,
National Engineering Laboratory
,
East Kilbride, UK
.
You do not currently have access to this content.