Thermal effects in monolayer graphene due to an electron flow are investigated with a direct simulation Monte Carlo (DSMC) analysis. The crystal heating is described by simulating the phonon dynamics of the several relevant branches, acoustic, optical, K and Z phonons. The contribution of each type of phonon is highlighted. In particular, it is shown that the Z phonons, although they do not enter the scattering with electrons, play a non-negligible role in the determination of the crystal temperature. The phonon distributions are evaluated by counting the emission and absorption processes during the MC simulation. The crystal temperature raise is obtained for several applied electric fields and for several positive Fermi energies. The latter produces the effect of a kind of n-doping in the graphene layer. Critical temperatures can be reached in a few tens of picoseconds posing remarkable issues regarding the cooling system in view of a possible application of graphene in semiconductor devices. Moreover, a significant influence of the lattice temperature on the characteristic curves is observed only for long times, confirming graphene rather robust as regards the electrical performance.

References

1.
Castro Neto
,
A. H.
,
Guinea
,
F.
,
Peres
,
N. M. R.
,
Novoselov
,
K. S.
, and
Geim
,
A. K.
,
2009
, “
The Electronic Properties of Graphene
,”
Rev. Mod. Phys.
,
81
(
1
), pp.
109
162
.
2.
Ferry
,
D. K.
, and
Shishir
,
R. S.
,
2009
, “
Velocity Saturation in Intrinsic Graphene
,”
J. Phys.: Condens. Matter
,
21
(
34
), p.
344201
.
3.
Li
,
X.
,
Barry
,
E. A.
,
Zavada
,
J. M.
,
Buongiorno Nardelli
,
M.
, and
Kim
,
K. W.
,
2010
, “
Surface Polar Phonon Dominated Electron Transport in Graphene
,”
Appl. Phys. Lett.
,
97
(
23
), p.
232105
.
4.
Romano
,
V.
,
Majorana
,
A.
, and
Coco
,
M.
,
2015
, “
DSMC Method Consistent With the Pauli Exclusion Principle and Comparison With Deterministic Solutions for Charge Transport in Graphene
,”
J. Comput. Phys.
,
302
, pp.
267
284
.
5.
Camiola
,
V. D.
, and
Romano
,
V.
,
2014
, “
Hydrodynamical Model for Charge Transport in Graphene
,”
J. Stat. Phys.
,
157
(
6
), pp.
1114
1137
.
6.
Morandi
,
O.
, and
Schürrer
,
F.
,
2011
, “
Wigner Model for Quantum Transport in Graphene
,”
J. Phys. A: Math. Theor.
,
44
(
26
), p.
265301
.
7.
Barletti
,
L.
,
2014
, “
Hydrodynamic Equations for Electrons in Graphene Obtained From the Maximum Entropy Principle
,”
J. Math. Phys.
,
55
(
8
), p.
083303
.
8.
Coco
,
M.
,
Mascali
,
G.
, and
Romano
,
V.
,
2016
, “
Monte Carlo Analysis of Thermal Effects in Monolayer Graphene
,”
J. Comput. Theor. Transp.
,
45
(
7
), pp.
540
553
.
9.
Coco
,
M.
,
Majorana
,
A.
, and
Romano
,
V.
,
2016
, “
Cross Validation of Discontinuous Galerkin Method and Monte Carlo Simulations of Charge Transport in Graphene on Substrate
,”
Ricerche Math.
,
66
(
1
), pp.
201
220
.
10.
Borowik
,
P.
,
Thobel
,
J.-L.
, and
Adamowicz
,
L.
,
2007
, “
Modified Monte Carlo Method for Study of Electron Transport in Degenerate Electron Gas in the Presence of Electron-Electron Interactions, Application to Graphene
,”
J. Comput. Phys.
,
341
, pp.
397
405
.
11.
Morandi
,
O.
,
2014
, “
Charge Transport and Hot-Phonon Activation in Graphene
,”
J. Comput. Theor. Transp.
,
43
(
1–7
), pp.
162
182
.
12.
Lichtenberger
,
P.
,
Morandi
,
O.
, and
Schürrer
,
F.
,
2011
, “
High-Field Transport and Optical Phonon Scattering in Graphene
,”
Phys. Rev. B
,
84
(
4
), p.
045406
.
13.
Das Sarma
,
S.
,
Adam
,
S.
,
Hwang
,
E. H.
, and
Rossi
,
E.
,
2011
, “
Electronic Transport in Two-Dimensional Graphene
,”
Rev. Mod. Phys.
,
83
(
2
), pp.
407
407
.
14.
Borysenko
,
K. M.
,
Mullen
,
J. T.
,
Barry
,
E. A.
,
Paul
,
S.
,
Semenov
,
Y. G.
,
Zavada
,
J. M.
,
Buongiorno Nardelli
,
M.
, and
Kim
,
K. W.
,
2010
, “
First-Principles Analysis of Electron-Phonon Interactions in Graphene
,”
Phys. Rev. B
,
81
(12), p.
121412(R)
.
15.
Mascali
,
G.
, and
Romano
,
V.
,
2014
, “
A Comprehensive Hydrodynamical Model for Charge Transport in Graphene
,”
International Workshop on Computational Electronics
(
IWCE
), Paris, France, June 3–6.
16.
Alì
,
G.
,
Mascali
,
G.
,
Romano
,
V.
, and
Torcasio
,
C. R.
,
2012
, “
A Hydrodynamic Model for Covalent Semiconductors, With Applications to GaN and SiC
,”
Acta Appl. Math.
,
122
(
1
), pp. 335–348.
17.
Camiola
,
V. D.
,
Mascali
,
G.
, and
Romano
,
V.
,
2012
, “
Numerical Simulation of a Double-Gate Mosfet With a Subband Model for Semiconductors Based on the Maximum Entropy Principle
,”
Continuum Mech. Therm.
,
24
(
4–6
), p.
417
.
18.
Mounet
,
N.
, and
Marzari
,
N.
,
2005
, “
First-Principles Determination of the Structural, Vibrational, and Thermodynamical Properties of Diamond, Graphite, and Derivatives
,”
Phys. Rev. B
,
71
(
20
), p.
205214
.
19.
Nika
,
D. L.
, and
Balandin
,
A. A.
,
2012
, “
Two-Dimensional Phonon Transport in Graphene
,”
J. Phys.: Condens. Matter
,
24
(
23
), p.
233203
.
20.
Pop
,
E.
,
Varshney
,
V.
, and
Roy
,
A. K.
,
2012
, “
Thermal Properties of Graphene: Fundamentals and Applications
,”
MRS Bull.
,
37
(
12
), p.
1273
.
21.
Mascali
,
G.
,
2015
, “
A Hydrodynamic Model for Silicon Semiconductors Including Crystal Heating
,”
Eur. J. Appl. Math.
,
26
(
4
), pp.
447
496
.
22.
Hao
,
Q.
,
Chen
,
G.
, and
Jend
,
M.-S.
,
2009
, “
Frequency-Dependent Monte Carlo Simulations of Phonon Transport in Two-Dimensional Porous Silicon With Aligned Pores
,”
J. Appl. Phys.
,
106
(
11
), p.
114321
.
23.
Péraud
,
J.-P. M.
, and
Hadjiconstantonou
,
N. G.
,
2011
, “
Efficient Simulation of Multidimensional Phonon Transport Using Energy-Based Variance-Reduced Monte Carlo Formulations
,”
Phys. Rev. B
,
84
(
20
), p.
205331
.
24.
Vallabhaneni
,
A. K.
,
Singh
,
D.
,
Bao
,
H.
,
Murthy
,
J.
, and
XiuRuan
,
X.
,
2016
, “
Reliability of Raman Measurements of Thermal Conductivity of Single-Layer Graphene Due to Selective Electron-Phonon Coupling: A First-Principles Study
,”
Phys. Rev B
,
93
, p.
125432
.
25.
Landon
,
C. D.
, and
Hadjiconstantonou
,
N. G.
,
2014
, “
Deviational Simulation of Phonon Transport in Graphene Ribbons With Ab Initio Scattering
,”
J. Appl. Phys.
,
116
(
16
), p.
163502
.
26.
Seo
,
J. H.
,
Jo
,
I.
,
Moore
,
A. L.
,
Lindsay
,
L.
,
Aitken
,
Z. H.
,
Pettes
,
M. T.
,
Li
,
X.
,
Yao
,
Z.
,
Huang
,
R.
,
Broido
,
D.
,
Mingo
,
N.
,
Ruoff
,
R. S.
, and
Shi
,
L.
,
2010
, “
Two-Dimensional Phonon Transport in Supported Graphene
,”
Science
,
328
(
5975
), pp.
213
216
.
27.
Lugli
,
P.
, and
Ferry
,
D. K.
,
1985
, “
Degeneracy in the Ensemble Monte Carlo Method for High-Field Transport in Semiconductors
,”
IEEE Trans. Electron Devices
,
32
(
11
), pp.
2431
2437
.
28.
Pop
,
E.
,
Sinha
,
S.
, and
Goodson
,
K. E.
,
2006
, “
Heat Generation and Transport in Nanometer-Scale Transistors
,”
Proc. IEEE
,
94
(
8
), pp.
1587
1601
.
29.
Muscato
,
O.
,
Di Stefano
,
V.
, and
Wagner
,
W.
,
2013
, “
A Variance-Reduced Electrothermal Monte Carlo Method for Semiconductor Device Simulation
,”
Comput. Math. Appl.
,
65
(
3
), pp.
520
527
.
30.
Dorgan
,
V. E.
,
Bae
,
M. H.
, and
Pop
,
E.
,
2010
, “
Mobility and Saturation Velocity in Graphene on SiO2
,”
Appl. Phys. Lett.
,
97
(
8
), p.
082112
.
31.
Gierz
,
I.
,
Riedl
,
C.
,
Starke
,
U.
, and
Ast
,
C. R.
,
2008
, “
Atomic Hole Doping of Graphene
,”
Nano Lett.
,
8
(
12
), pp.
4603
4607
.
32.
Freitag
,
M.
,
Steiner
,
M.
,
Martin
,
Y.
,
Perebeinos
,
V.
,
Chen
,
Z.
,
Tsang
,
J. C.
, and
Avouris
,
P.
,
2009
, “
Energy Dissipation in Graphene Field-Effect Transistor
,”
Nano Lett.
,
9
(
5
), pp.
1883
1888
.
33.
Sullivan
,
S.
,
Vallabhaneni
,
A.
,
Kholmanov
,
I.
,
Ruan
,
X.
,
Murthy
,
J.
, and
Shi
,
L.
,
2017
, “
Optical Generation and Detection of Local Nonequilibrium Phonons in Suspended Graphene
,”
Nano Lett.
,
17
(
3
), pp.
2049
2056
.
You do not currently have access to this content.