This is a theoretical exploration of the magnetohydrodynamic Carreau fluid in a suspension of dust and graphene nanoparticles. Graphene is a two-dimensional single-atom thick carbon nanosheet. Due to its high thermal conductivity, electron mobility, large surface area, and stability, it has remarkable material, electrical, optical, physical, and chemical properties. In this study, a simulation is performed by mixing of graphene + water and graphene + ethylene glycol into dusty non-Newtonian fluid. Dispersion of graphene nanoparticles in dusty fluids finds applications in biocompatibility, bio-imaging, biosensors, detection and cancer treatment, in monitoring stem cells differentiation, etc. Graphene + water and graphene + ethylene glycol mixtures are significant in optimizing the heat transport phenomena. Initially arising set of physical governing partial differential equations are transformed to ordinary differential equations (ODEs) with the assistance of similarity transformations. Consequential highly nonlinear ODEs are solved numerically through Runge–Kutta Fehlberg scheme. The computational results for nondimensional temperature and velocity profiles are presented through graphs. Additionally, the numerical values of friction factor and heat transfer rate are tabulated numerically for various physical parameter obtained. We also validated the present results with previous published study and found to be highly satisfactory. The formulated model in this study reveals that heat transfer rate and wall friction is higher in mixture of graphene + ethylene glycol when compared to graphene + water.

References

References
1.
Choi
,
U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,” Argonne National Laboratory, Argonne, IL, Report No. ANL/MSD/CP--84938.
2.
Xuan
,
Y.
, and
Li
,
Q.
,
2000
, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
,
21
(
1
), pp.
58
64
.
3.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.
4.
Bachok
,
N.
,
Ishak
,
A.
,
Nazar
,
R.
, and
Senu
,
N.
,
2013
, “
Stagnation-Point Flow Over a Permeable Stretching/Shrinking Sheet in a Copper-Water Nanofluid
,”
Boundary Value Probl.
,
2013
(
1
), p.
39
.
5.
Jayachandra Babu
,
M.
, and
Sandeep
,
N.
,
2016
, “
Three-Dimensional MHD Slip Flow of Nanofluids Over a Slendering Stretching Sheet With Thermophoresis and Brownian Motion Effects
,”
Adv. Powder Technol.
,
27
(
5
), pp.
2039
2050
.
6.
Raju
,
C. S. K.
,
Sekhar
,
K. R.
,
Ibrahim
,
S. M.
,
Lorenzini
,
G.
,
Viswanatha Reddy
,
G.
, and
Lorenzini
,
E.
,
2017
, “
Variable Viscosity on Unsteady Dissipative Carreau Fluid Over a Truncated Cone Filled With Titanium Alloy Nanoparticles
,”
Continuum Mech. Thermodyn.
,
29
(6), p. 1417.
7.
Khalil
,
I.
,
Julkapli
,
N. M.
,
Yehye
,
W. A.
,
Basirun
,
W. J.
, and
Bhargava
,
S. K.
,
2016
, “
Graphene-Gold Nanoparticles Hybrid-Synthesis, Functionalization, and Application in a Electrochemical and Surface-Enhanced Raman Scattering Biosensor
,”
Materials
,
9
(6), p. 406.
8.
Amiri
,
A.
,
Shanbedi
,
M.
,
Rafieerad
,
A. R.
,
Rashidi
,
M. M.
,
Zaharinie
,
T.
,
Zubir
,
M. N. M.
,
Kazi
,
S. N.
, and
Chew
,
B. T.
,
2016
, “
Functionalization and Exfoliation of Graphite Into Mono Layer Graphene for Improved Heat Dissipation
,”
J. Taiwan Inst. Chem. Eng.
,
71
, pp. 480–493.
9.
Yu
,
W.
,
Xie
,
H.
, and
Bao
,
D.
,
2010
, “
Enhanced Thermal Conductivities of Nanofluids Containing Graphene Oxide Nanosheets
,”
Nanotechnology
,
21
(
5
), p.
55705
.
10.
Beck
,
M. P.
,
Yuan
,
Y.
,
Warrier
,
P.
, and
Teja
,
A. S.
,
2010
, “
The Thermal Conductivity of Alumina Nanofluids in Water, Ethylene Glycol, and Ethylene Glycol + Water Mixtures
,”
J. Nanopart. Res.
,
12
(
4
), pp.
1469
1477
.
11.
Novoselov
,
K. S.
,
Geim
,
A. K.
,
Morozov
,
S. V.
,
Jiang
,
D.
,
Zhang
,
Y.
,
Dubonos
,
S. V.
,
Grigorieva
,
I. V.
, and
Firsov
,
A. A.
,
2004
, “
Electric Field Effect in Atomically Thin Carbon Films
,”
Science
,
306
(
5696
), pp.
666
669
.
12.
Wang
,
S.
,
Jiang
,
S. P.
, and
Wang
,
X.
,
2011
, “
Microwave-Assisted One-Pot Synthesis of Metal/Metal Oxide Nanoparticles on Graphene and Their Electrochemical Applications
,”
Electrochim. Acta.
,
56
(
9
), pp.
3338
3344
.
13.
Pastoriza-Gallego
,
M. J.
,
Lugo
,
L.
,
Legido
,
J. L.
, and
Piñeiro
,
M. M.
,
2011
, “
Thermal Conductivity and Viscosity Measurements of Ethylene Glycol-Based Al2O3 Nanofluids
,”
Nanoscale Res. Lett.
,
6
(
1
), p. 221.
14.
Mehrali
,
M.
,
Sadeghinezhad
,
E.
,
Latibari
,
S. T.
,
Kazi
,
S. N.
,
Mehrali
,
M.
,
Zubir
,
M. N. B. M.
, and
Metselaar
,
H. S. C.
,
2014
, “
Investigation of Thermal Conductivity and Rheological Properties of Nanofluids Containing Graphene Nanoplatelets
,”
Nanoscale Res. Lett.
,
9
(
1
), p.
15
.
15.
Lu
,
N.
,
Li
,
Z.
, and
Yang
,
J.
,
2009
, “
Electronic Structure Engineering Via on-Plane Chemical Functionalization: A Comparison Study on Two-Dimensional Polysilane and Graphane
,”
J. Phys. Chem. C
,
113
(
38
), pp.
16741
16746
.
16.
Sandeep
,
N.
, and
Sulochana
,
C.
,
1998
, “
MHD Flow and Heat Transfer of a Dusty Nanofluid Over a Stretching Surface in Porous Medium
,”
Jordan J. Civ. Eng.
,
11
(1), pp.
149
164
.https://search.proquest.com/openview/88d7f2507d96bcb60e641ca6ac83523c/1?pq-origsite=gscholar&cbl=2035891
17.
Reddy
,
J. V. R.
,
Sugunamma
,
V.
,
Sandeep
,
N.
, and
Raju
,
C. S. K.
,
2015
, “
Chemically Reacting MHD Dusty Nanofluid Flow Over a Vertical Cone With Non-Uniform Heat Source/Sink
,”
Walailak J. Sci. Technol.
,
14
(
2
), pp.
141
156
.http://wjst.wu.ac.th/index.php/wjst/article/view/1906/651
18.
Krishnamurthy
,
M. R.
,
Gireesha
,
B. J.
,
Gorla
,
R. S. R.
, and
Prasannakumara
,
B. C.
,
2016
, “
Suspended Particle Effect on Slip Flow and Melting Heat Transfer of Nanofluid Over a Stretching Sheet Embedded in a Porous Medium in the Presence of Nonlinear Thermal Radiation
,”
J. Nanofluids
,
5
(4), pp.
502
510
.
19.
C.
,
Sulochana
,
J.
,
Prakash
., and
Sandeep
,
2016
, “
Unsteady MHD Flow of a Dusty Nanofluid Past a Vertical Stretching Surface With Non-Uniform Heat Source/Sink
,”
Int. J. Sci. Eng.
,
10
(1), pp.
1
9
.https://www.researchgate.net/publication/307675919_Unsteady_MHD_flow_of_a_dusty_nanofluid_past_a_vertical_stretching_surface_with_non-uniform_heat_sourcesink
20.
Raju
,
C. S. K.
, and
Sandeep
,
N.
,
2016
, “
Unsteady Three-Dimensional Flow of Casson-Carreau Fluids Past a Stretching Surface
,”
Alexandria Eng. J.
,
55
(
2
), pp.
1115
1126
.
21.
Sastry, D. R. V. S. R. K.
,
Venkataraman, V.
,
Kannan, K.
, and
Srinivasu, M.
,
2016
, “
Unsteady Viscous Dissipative Dusty Nanofluid Flow Over a Vertical Plate
,”
Int. J. Eng. Technol.
,
8
(
5
), pp.
2008
2017
.
22.
Raju
,
C. S. K.
,
Sandeep
,
N.
, and
Sugunamma
,
V.
,
2016
, “
Unsteady Magneto-Nanofluid Flow Caused by a Rotating Cone With Temperature Dependent Viscosity: A Surgical Implant Application
,”
J. Mol. Liq.
,
222
, pp.
1183
1193
.
23.
Raju
,
C. S. K.
, and
Sandeep
,
N.
,
2017
, “
Unsteady Casson Nanofluid Flow Over a Rotating Cone in a Rotating Frame Filled With Ferrous Nanoparticles: A Numerical Study
,”
J. Magn. Magn. Mater.
,
421
, pp.
216
224
.
24.
Raju
,
C. S. K.
,
Sandeep
,
N.
, and
Babu
,
M. J.
,
2016
, “
Effects of Non-Uniform Heat Source/Sink and Chemical Reaction on Unsteady MHD Nanofluid Flow Over a Permeable Stretching Surface
,”
Adv. Sci. Eng. Med.
,
8
(
3
), pp.
165
174
.
25.
Hashim
,
M. K.
,
2017
, “
On Cattaneo–Christov Heat Flux Model for Carreau Fluid Flow Over a Slendering Sheet
,”
Results Phys.
,
7
, pp.
310
319
.
26.
Hayat
,
T.
,
Qayyum
,
S.
,
Shehzad
,
S. A.
, and
Alsaedi
,
A.
,
2017
, “
Cattaneo–Christov Double-Diffusion Model for Flow of Jeffrey Fluid
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(12), pp. 4965–4971.
27.
Rashad, A. M.
,
Mallikarjuna, B.
,
Chamkha, A. J.
, and
Hariprasad Raju, S.
, 2016, “
Thermophoresis Effect on Heat and Mass Transfer From a Rotating Cone in a Porous Medium With Thermal Radiation
,”
Afrika Matematika
,
27
(7–8), pp. 1409–1424.
28.
Shehzad
,
S. A.
,
Abbasi
,
F. M.
,
Hayat
,
T.
, and
Alsaedi
,
A.
,
2016
, “
Cattaneo-Christov Heat Flux Model for Darcy-Forchheimer Flow of an Oldroyd-B Fluid With Variable Conductivity and Non-Linear Convection
,”
J. Mol. Liq.
,
224
(Pt. A), pp.
274
278
.
29.
Waqas
,
M.
,
Hayat
,
T.
,
Farooq
,
M.
,
Shehzad
,
S. A.
, and
Alsaedi
,
A.
,
2016
, “
Cattaneo-Christov Heat Flux Model for Flow of Variable Thermal Conductivity Generalized Burgers Fluid
,”
J. Mol. Liq.
,
220
, pp.
642
648
.
30.
Abel
,
M. S.
, and
Mahesha
,
N.
,
2008
, “
Heat Transfer in MHD Viscoelastic Fluid Flow Over a Stretching Sheet With Variable Thermal Conductivity, Non-Uniform Heat Source and Radiation
,”
Appl. Math. Mod.
,
32
(
10
), pp.
1965
1983
.
You do not currently have access to this content.