Invisibility has recently been achieved in optics, electromagnetics, acoustics, thermotics, fluid mechanics, and quantum mechanics; it was realized through a properly designed cloak structure with unconventional (anisotropic, inhomogeneous, and singular) material parameters, which limit practical applications. Here, we show, directly from the solution of Laplace's equation, that two or more conventional (isotropic, homogeneous, and nonsingular) materials can be made thermally invisible by tailoring the many-particle local-field effects. Our many-particle thermal invisibility essentially serves as a new class of invisibility with a mechanism fundamentally differing from that of the prevailing cloaking-type invisibility. We confirm it in simulation and experiment. As an application, the concept of many-particle thermal invisibility helps us propose a class of many-particle thermal diodes: the diodes allow heat conduction from one direction with invisibility, but prohibit the heat conduction from the inverse direction with visibility. This work reveals a different mechanism for thermal camouflage and thermal rectification by using composites, and it also suggests that besides thermotics, many-particle local-field effects can be a convenient and effective mechanism for achieving similar controls in other fields, e.g., optics, electromagnetics, acoustics, and fluid mechanics.

References

References
1.
Leonhardt
,
U.
,
2006
, “
Optical Conformal Mapping
,”
Science
,
312
(
5781
), pp.
1777
1780
.
2.
Pendry
,
J. B.
,
Schurig
,
D.
, and
Smith
,
D. R.
,
2006
, “
Controlling Electromagnetic Fields
,”
Science
,
312
(
5781
), pp.
1780
1780
.
3.
Xu
,
L.
, and
Chen
,
H.
,
2015
, “
Conformal Transformation Optics
,”
Nat. Photonics
,
9
(
1
), pp.
15
23
.
4.
Shalaev
,
V. M.
,
2008
, “
Transforming Light
,”
Science
,
322
(
5900
), pp.
384
386
.
5.
Tolga
,
E.
,
Stenger
,
N.
,
Brenner
,
P.
,
Pendry
,
J. B.
, and
Wegener
,
M.
,
2010
, “
Three-Dimensional Invisibility Cloak at Optical Wavelengths
,”
Science
,
328
(
5976
), pp.
337
339
.
6.
Chen
,
H. Y.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2010
, “
Transformation Optics and Metamaterials
,”
Nat. Mater.
,
9
(
5
), pp.
387
396
.
7.
Schittny
,
R.
,
Kadic
,
M.
,
Bückmann
,
T.
, and
Wegener
,
M.
,
2014
, “
Invisibility Cloaking in a Diffusive Light Scattering Medium
,”
Science
,
345
(
6195
), pp.
427
429
.
8.
Ni
,
X. J.
,
Wong
,
Z. J.
,
Mrejen
,
M.
,
Wang
,
Y.
, and
Zhang
,
X.
,
2014
, “
An Ultrathin Invisibility Skin Cloak for Visible Light
,”
Science
,
349
(
6254
), pp.
1310
1314
.
9.
Schurig
,
D.
,
Mock
,
J. J.
,
Justice
,
B. J.
,
Cummer
,
S. A.
,
Pendry
,
J. B.
,
Starr
,
A. F.
, and
Smith
,
D. R.
,
2006
, “
Metamaterial Electromagnetic Cloak at Microwave Frequencies
,”
Science
,
314
(
5801
), pp.
977
980
.
10.
Alù
,
A.
, and
Engheta
,
N.
,
2005
, “
Achieving Transparency With Plasmonic and Metamaterial Coatings
,”
Phys. Rev. E
,
72
(
Pt. 2
), p.
016623
.
11.
Greenleaf
,
A.
,
Kurylev
,
Y.
,
Lassas
,
M.
,
Leonhardt
,
U.
, and
Uhlmann
,
G.
,
2012
, “
Cloaked Electromagnetic, Acoustic, and Quantum Amplifiers Via Transformation Optics
,”
Proc. Natl. Acad. Sci.
,
109
(
26
), pp.
10169
10174
.
12.
Gömöry
,
F.
,
Solovyov
,
M.
,
Śouc
,
J.
,
Navau
,
C.
,
Camps
,
J. P.
, and
Sanchez
,
A.
,
2012
, “
Experimental Realization of a Magnetic Cloak
,”
Science
,
335
(
6075
), pp.
1466
1468
.
13.
Lukens
,
J. M.
,
Leaird
,
D. E.
, and
Weiner
,
A. M.
,
2013
, “
A Temporal Cloak at Telecommunication Data Rate
,”
Nature
,
498
(
7453
), pp.
205
208
.
14.
Landy
,
N.
, and
Smith
,
D. R.
,
2013
, “
A Full-Parameter Unidirectional Metamaterial Cloak for Microwaves
,”
Nat. Mater.
,
12
(
1
), pp.
25
28
.
15.
Zigoneanu
,
L.
,
Popa
,
B. I.
, and
Cummer
,
S. A.
,
2014
, “
Three-Dimensional Broadband Omnidirectional Acoustic Ground Cloak
,”
Nat. Mater.
,
13
(
4
), pp.
352
355
.
16.
Buckmann
,
T.
,
Thiel
,
M.
,
Kadic
,
M.
,
Schittny
,
R.
, and
Wegener
,
M.
,
2014
, “
An Elasto-Mechanical Unfeelability Cloak Made of Pentamode Metamaterials
,”
Nat. Commun.
,
5
, p.
4130
.
17.
Chen
,
H. Y.
, and
Chan
,
C. T.
,
2007
, “
Acoustic Cloaking in Three Dimensions Using Acoustic Metamaterials
,”
Appl. Phys. Lett.
,
91
(
18
), p.
183518
.
18.
Wu
,
L. Z.
,
2015
, “
Cylindrical Thermal Cloak Based on the Path Design of Heat Flux
,”
ASME J. Heat Transfer
,
137
(
2
), p.
021301
.
19.
Farhat
,
M.
,
Enoch
,
S.
,
Guenneau
,
S.
, and
Movchan
,
A. B.
,
2008
, “
Broadband Cylindrical Acoustic Cloak for Linear Surface Waves in a Fluid
,”
Phys. Rev. Lett.
,
101
(
13
), p.
134501
.
20.
Zhang
,
H. C.
,
Xu
,
G. Q.
,
Yu
,
H. Y.
,
Li
,
Y.
, and
Wei
,
Y. Q.
,
2017
, “
Investigating Entropy Generation in a Thermal Cloak Corresponding Different Material Layer Number
,”
ASME J. Heat Transfer
,
139
(
5
), p.
054501
.
21.
Fan
,
C. Z.
,
Gao
,
Y.
, and
Huang
,
J. P.
,
2008
, “
Shaped Graded Materials With an Apparent Negative Thermal Conductivity
,”
Appl. Phys. Lett.
,
92
(
25
), p.
251907
.
22.
Leonhardt
,
U.
,
2013
, “
Cloaking of Heat
,”
Nature
,
498
(
7455
), pp.
440
441
.
23.
Narayana
,
S.
, and
Sato
,
Y.
,
2012
, “
Heat Flux Manipulation With Engineered Thermal Materials
,”
Phys. Rev. Lett.
,
108
(
21
), p.
214303
.
24.
Schittny
,
R.
,
Kadic
,
M.
,
Guenneau
,
S.
, and
Wegener
,
M.
,
2013
, “
Experiments on Transformation Thermodynamics: Molding the Flow of Heat
,”
Phys. Rev. Lett.
,
110
(
19
), p.
195901
.
25.
Xu
,
H. Y.
,
Shi
,
X. H.
,
Gao
,
F.
,
Sun
,
H. D.
, and
Zhang
,
B. L.
,
2014
, “
Ultrathin Three-Dimensional Thermal Cloak
,”
Phys. Rev. Lett.
,
112
(
5
), p.
054301
.
26.
Han
,
T. C.
,
Bai
,
X.
,
Gao
,
D. L.
,
Thong
,
J. T. L.
,
Li
,
B. W.
, and
Qiu
,
C. W.
,
2014
, “
Experimental Demonstration of a Bilayer Thermal Cloak
,”
Phys. Rev. Lett.
,
112
(
5
), p.
054302
.
27.
Ma
,
Y. G.
,
Liu
,
Y. C.
,
Raza
,
M.
,
Wang
,
Y. D.
, and
He
,
S. L.
,
2014
, “
Experimental Demonstration of a Multiphysics Cloak: Manipulating Heat Flux and Electric Current Simultaneously
,”
Phys. Rev. Lett.
,
113
(
20
), p.
205501
.
28.
Li
,
Y.
,
Shen
,
X. Y.
,
Wu
,
Z. H.
,
Huang
,
J. Y.
,
Chen
,
Y. X.
,
Ni
,
Y. S.
, and
Huang
,
J. P.
,
2015
, “
Temperature-Dependent Transformation Thermotics: From Switchable Thermal Cloaks to Macroscopic Thermal Diodes
,”
Phys. Rev. Lett.
,
115
(
19
), p.
195503
.
29.
Shen
,
X. Y.
,
Li
,
Y.
,
Jiang
,
C. R.
, and
Huang
,
J. P.
,
2016
, “
Temperature Trapping: Energy-Free Maintenance of Constant Temperatures as Ambient Temperature Gradients Change
,”
Phys. Rev. Lett.
,
117
(
5
), p.
055501
.
30.
Urzhumov
,
Y. A.
, and
Smith
,
D. R.
,
2011
, “
Fluid Flow Control With Transformation Media
,”
Phys. Rev. Lett.
,
107
(
7
), p.
074501
.
31.
Alam
,
M. R.
,
2012
, “
Broadband Cloaking in Stratified Seas
,”
Phys. Rev. Lett.
,
108
(
8
), p.
084502
.
32.
Zhang
,
S.
,
Genov
,
D. A.
,
Sun
,
C.
, and
Zhang
,
X.
,
2008
, “
Cloaking of Matter Waves
,”
Phys. Rev. Lett.
,
100
(
12
), p.
123002
.
33.
Liao
,
B. L.
,
Zebarjadi
,
M.
,
Esfarjani
,
K.
, and
Chen
,
G.
,
2012
, “
Cloaking Core-Sell Nanoparticles From Conducting Electrons in Solids
,”
Phys. Rev. Lett.
,
109
(
12
), p.
126806
.
34.
Fujii
,
G.
,
Watanabe
,
H.
,
Yamada
,
T.
,
Ueta
,
T.
, and
Mizuno
,
M.
,
2013
, “
Level Set Based Topology Optimization for Optical Cloaks
,”
Appl. Phys. Lett.
,
102
(
25
), p.
251106
.
35.
Lan
,
L.
,
Sun
,
F.
,
Liu
,
Y. C.
,
Ong
,
C. K.
, and
Ma
,
Y. G.
,
2013
, “
Experimentally Demonstrated a Unidirectional Electromagnetic Cloak Designed by Topology Optimization
,”
Appl. Phys. Lett.
,
103
(
12
), p.
121113
.
36.
Ma
,
Y. G.
,
Lan
,
L.
,
Jiang
,
W.
,
Sun
,
F.
, and
He
,
S. L.
,
2013
, “
A Transient Thermal Cloak Experimentally Realized Through a Rescaled Diffusion Equation With Anisotropic Thermal Diffusivity
,”
NPG Asia Mater.
,
5
(
11
), p.
e73
.
37.
Li
,
B. W.
,
Wang
,
L.
, and
Casati
,
G.
,
2004
, “
Thermal Diode: Rectification of Heat Flux
,”
Phys. Rev. Lett.
,
93
(
18
), p.
184301
.
38.
Li
,
N. B.
,
Ren
,
J.
,
Wang
,
L.
,
Zhang
,
G.
,
Hänggi
,
P.
, and
Li
,
B. W.
,
2012
, “
Phononics: Manipulating Heat Flow With Electronic Analogs and Beyond
,”
Rev. Mod. Phys.
,
84
(
3
), pp.
1045
1066
.
You do not currently have access to this content.