This paper presents a numerical method for high-speed compressible cavitating flows. The method is derived from one-fluid formulation in a sense that the two phases are well mixed and the mixture is considered as a locally homogeneous media. Energy equation is solved to predict the temperature evolution which is then used together with pressure to update the density field. A volume of fluid (VOF) phase-fraction based interface capturing approach is used to capture the phase front between the two immiscible fluids. The derived formulations have been implemented into a pressure-based, segregated algebraic semi-implicit compressible solver in Openfoam, which can be used to solve for high-speed compressible two-phase flows involving phase changing. Numerical examples include the cavitating flows induced by an ultrasonic oscillating horn with and without a counter sample. The numerical results by the proposed method are validated against the published experimental data as well as numerical results and good agreements have been obtained. Our calculation demonstrates that the proposed numerical method is applicable to the study of high-speed two phase flows with phase transition and wave propagation, such as shock waves induced by the collapse of the cavitation bubbles.

References

1.
Choo
,
K. S.
, and
Kim
,
S. J.
,
2010
, “
Heat Transfer and Fluid Flow Characteristics of Two-Phase Impinging Jets
,”
Int. J. Heat Mass Transfer
,
53
(
25–26
), pp.
5692
5699
.
2.
Parker
,
R. R.
,
Klausner
,
J. F.
, and
Mei
,
R. W.
,
2012
, “
Supersonic Two-Phase Impinging Jet Heat Transfer
,”
ASME J. Heat Transfer
,
135
(
2
), p.
022201
.
3.
Lu
,
X.
,
John Chandar
,
D. D.
,
Chen
,
Y.
, and
Lou
,
J.
,
2017
, “
An Overlapping Domain Decomposition Based Near-Far Field Coupling Method for Wave Structure Interaction Simulations
,”
Coastal Eng.
,
126
, pp.
37
50
.
4.
Martinez Ferrer
,
P. J.
,
Causon
,
D. M.
,
Qian
,
L.
,
Mingham
,
C. G.
, and
Ma
,
Z. H.
,
2016
, “
A Multi-Region Coupling Scheme for Compressible and Incompressible Flow Solvers for Two-Phase Flow in a Numerical Wave Tank
,”
Comput. Fluids
,
125
, pp.
116
129
.
5.
Lugni
,
C.
,
Brocchini
,
M.
, and
Faltinsen
,
O. M.
,
2006
, “
Wave Impact Loads: The Role of the Flip-Through
,”
Phys. Fluids
,
18
(
12
), p.
122101
.
6.
Bullock
,
G. N.
,
Obhrai
,
C.
,
Peregrine
,
D. H.
, and
Bredmose
,
H.
,
2007
, “
Violent Breaking Wave Impacts—Part1: Results From Large Regular Wave Tests on Vertical and Sloping Walls
,”
Coastal Eng.
,
54
(
8
), pp.
602
617
.
7.
Wu
,
J. Y.
,
Utturkar
,
Y.
, and
Shyy
,
W.
,
2003
, “
Assessment of Modeling Strategies for Cavitating Flow around a Hydrofoil
,”
Fifth International Symposium on Cavitation
, Osaka, Japan, Nov. 1–5.
8.
Lindau
,
J. W.
,
Boger
,
D. A.
,
Medvitz
,
R. B.
, and Kunz, R. F.,
2005
, “
Propeller Cavitation Breakdown Analysis
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
995
1002
.
9.
Luo
,
X. W.
,
Ji
,
B.
,
Peng
,
X. X.
, Xu, H., and Nishi, M.,
2012
, “
Numerical Simulation of Cavity Shedding From a Three-Dimensional Twisted Hydrofoil and Induced Pressure Fluctuation by Large-Eddy Simulation
,”
ASME J. Fluids Eng.
,
134
(
4
), p.
041202
.
10.
Miller
,
S. T.
,
Jasak
,
H.
,
Boger
,
D. A.
,
Paterson
,
E. G.
, and
Nedungadi
,
A.
,
2013
, “
A Pressure-Based, Compressible, Two-Phase Flow Finite Volume Method for Underwater Explosions
,”
Comput. Fluids
,
87
, pp.
132
143
.
11.
Saito
,
Y.
,
Takami
,
R.
,
Nakamori
,
I.
, and Ikohagi, I.,
2007
, “
Numerical Analysis of Unsteady Behavior of Cloud Cavitation Around a NACA0015 Foil
,”
Comput. Mech.
,
40
(
1
), pp.
85
96
.
12.
Zhang
,
L. X.
, and
Khoo
,
B. C.
,
2014
, “
Dynamics of Unsteady Cavitating Flow in Compressible Two-Phase Fluid
,”
Ocean Eng.
,
87
, pp.
174
184
.
13.
Tseng
,
C. C.
, and
Shyy
,
W.
,
2010
, “
Modeling for Isothermal and Cryogenic Cavitation
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
513
525
.
14.
Arndt
,
R. E. A.
,
2012
, “
Some Remarks on Hydrofoil Cavitation
,”
J. Hydrodyn.
,
24
(
3
), pp.
305
314
.
15.
Arndt
,
R. E. A.
,
2012
, “
Cavitation Research From an International Perspective
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
15
, p. 012002.
16.
Morgut
,
M.
,
Nobile
,
E.
, and
Bilus
,
I.
,
2011
, “
Comparison of Mass Transfer Models for the Numerical Prediction of Sheet Cavitation Around a Hydrofoil
,”
Int. J. Multiphase Flow
,
37
(
6
), pp.
620
626
.
17.
Kubota
,
A.
,
Kato
,
H.
, and
Yamaguchi
,
H.
,
1992
, “
A New Modelling of Cavitating Flows: A Numerical Study of Unsteady Cavitation on a Hydrofoil Section
,”
J. Fluid Mech.
,
240
(
1
), pp.
59
96
.
18.
Gopalan
,
S.
, and
Katz
,
J.
,
2000
, “
Flow Structure and Modeling Issues in the Closure Region of Attached Cavitation
,”
Phys. Fluids
,
12
(
4
), pp.
895
911
.
19.
Senocak
,
I.
, and
Shyy
,
W.
,
2002
, “
Evaluations of Cavitation Models for Navier-Stokes Computations
,”
ASME
Paper No. FEDSM2002-31011.
20.
Kunz
,
R. F.
,
Boger
,
D. A.
,
Stinebring
,
D. R.
,
Chyczewski
,
T. S.
,
Lindau
,
J. W.
,
Gibeling
,
H. J.
,
Venkateswaran
,
S.
, and
Govindan
,
T. R.
,
2000
, “
A Preconditioned Navier-Stokes Method for Two-Phase Flows With Application to Cavitation Prediction
,”
Comput. Fluids
,
29
(
8
), pp.
849
875
.
21.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Huiying
,
L.
, and
Yu
,
J.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.
22.
Merkle
,
C. L.
,
Feng
,
J. Z.
, and
Buelow
,
P. E. O.
,
1992
, “
Computational Modeling of the Dynamics of Sheet Cavitation
,”
Third International Symposium on Cavitation
, Grenoble, France, Apr. 7–10.
23.
Senocak
,
I.
, and
Shyy
,
W.
,
2002
, “
A Pressure-Based Method for Turbulent Cavitating Flow Computations
,”
J. Comput. Phys.
,
176
(
2
), pp.
363
383
.
24.
Baer
,
M. R.
, and
Nunziato
,
J. W.
,
1986
, “
A Two-Phase Mixture Theory for the Deflagration-to-Detonation Transition (DDT) in Reactive Granular Materials
,”
Int. J. Multiphase Flows
,
12
(
6
), pp.
861
889
.
25.
Saurel
,
R.
, and
Abgrall
,
R.
,
1999
, “
A Multiphase Godunov Method for Compressible Multi-Fluid and Multiphase Flows
,”
J. Comput. Phys.
,
150
(
2
), pp.
425
467
.
26.
Zein
,
A.
,
Hantke
,
M.
, and
Warnecke
,
G.
,
2010
, “
Modeling Phase Transition for Compressible Two-Phase Flows Applied to Metastable Liquids
,”
J. Comput. Phys.
,
229
(
8
), pp.
2964
2998
.
27.
Murrone
,
A.
, and
Guillard
,
H.
,
2005
, “
A Five-Equation Reduced Model for Compressible Two-Phase Flow Problems
,”
J. Comput. Phys.
,
202
(
2
), pp.
664
698
.
28.
Petitpas
,
F.
,
Franquet
,
E.
,
Saurel
,
R.
, and
Le Metayer
,
O.
,
2007
, “
A Relaxation–Projection Method for Compressible Flows—Part II: Artificial Heat Exchanges for Multiphase Shocks
,”
J. Comput. Phys. Arch.
,
225
(
2
), pp.
2214
2248
.
29.
Venkateswaran
,
S.
,
Lindau
,
J. W.
,
Kunz
,
R. F.
, and Merkle, C. L.,
2002
, “
Computation of Multiphase Mixture Flows With Compressiblility Effects
,”
J. Comput. Phys
,
180
(
1
), pp.
54
77
.
30.
Keshtiban
,
I. J.
,
Belblidia
,
F.
, and
Webster
,
M. F.
,
2004
, “
Compressible Flow Solvers for Low Mach Number Flows—A Review
,”
Int. J. Numer. Methods Fluids
,
23
, pp.
77
103
.
31.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemishpere
,
New York
.
32.
Chorin
,
A. J.
,
1967
, “
A Numerical Method for Solving Incompressible Viscous Flow Problems
,”
J. Comput. Phys.
,
2
(
1
), pp.
12
26
.
33.
Karki
,
K.
, and
Patankar
,
S.
,
1989
, “
Pressure Based Calculation Procedure for Viscous Flows at All Speeds in Arbitrary Configurations
,”
AIAA J.
,
27
(
9
), pp.
1167
1178
.
34.
Issa
,
R. I.
,
1986
, “
Solution of the Implicitly Discretized Fluid Flow Equations by Operator Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.
35.
Lu
,
X.
,
Kumar
,
P.
,
Bahuguni
,
A.
, and
Wu
,
Y. L.
,
2014
, “
A CFD Study of Focused Extreme Wave Impact on Decks of Offshore Structures
,”
ASME
Paper No. OMAE2014-23804.
36.
Mostafa Ghiaasiaan
,
S.
,
2011
,
Convective Heat and Mass Transfer
, Cambridge University Press, Cambridge, UK, pp.
24
26
.
37.
Haider
,
J.
,
2013
, “
Numerical Modelling of Evaporation and Condensation Phenomena
,” Ph.D. thesis, Universität Stuttgart, Stuttgart, Germany.
38.
Richter
,
O.
,
Turnow
,
J.
,
Kornev
,
N.
, and
Hassel
,
E.
,
2017
, “
Numerical Simulation of Casting Processes: Coupled Mould Filling and Solidification Using VOF and Enthalpy-Porosity Method
,”
Heat Mass Transfer
,
53
(
6
), pp.
1957
1969
.
39.
Utturkar
,
Y.
,
2005
, “
Computational Modeling of Thermodynamic Effects in Cryogenic Cavitation
,”
Ph.D. dissertation
, University of Florida, Gainesville, FL.
40.
Samkhaniani
,
N.
, and
Ansari
,
M. R.
,
2017
, “
The Evaluation of the Diffuse Interface Method for Phase Change Simulations Using OpenFOAM
,”
Heat Transfer—Asian Res.
,
46
(8), pp. 1173–1203.
41.
Kunkelmann
,
C.
,
2011
, “
Numerical Modeling and Investigation of Boiling Phenomena
,” Ph.D. dissertation, Universitäts Darmstadt, Darmstadt, Germany.
42.
Zwart
,
P. J.
,
2005
, “
Numerical Modelling of Free Surface Flows and Cavitating Flows Industrial CFD Applications of Free Surface and Cavitating Flows
,”
Course, Industrial Two-Phase Flow CFD
, Rhode Saint Genese, Belgium, p.
8
.
43.
Schnerr
,
G. H.
, and
Sauer
,
J.
,
2001
, “
Physical and Numerical Modeling of Unsteady Cavitation Dynamics
,”
Fourth International Conference on Multiphase Flow
(
ICMF
), New Orleans, LA, May 27–June 1.
44.
Vinze
,
R.
,
Chandel
,
S.
,
Limaye
,
M. D.
, and
Prabhu
,
S. V.
,
2016
, “
Effect of Compressibility and Nozzle Configuration on Heat Transfer by Impinging Air Jet Over a Smooth Plate
,”
Appl. Therm. Eng.
,
101
(
25
), pp.
293
307
.
45.
Mottyll
,
S.
, and
Skoda
,
R.
,
2016
, “
Numerical 3D Flow Simulation of Ultrasonic Horns With Attached Cavitation Structures and Assessment of Flow Aggressiveness and Cavitation Erosion Sensitive Wall Zones
,”
Ultrason. Sonochem.
,
31
, pp.
570
589
.
46.
Žnidarčič
,
A.
,
Mettin
,
R.
,
Cairos
,
C.
, and
Dular
,
M.
,
2014
, “
Attached Cavitation at a Small Diameter Ultrasonic Horn Tip
,”
Phys. Fluids
,
26
(2), p.
023304
.
47.
Mottyll
,
S.
,
Muller
,
S.
,
Niederhofer
,
P.
,
Hussong
,
J.
,
Huth
,
S.
, and
Skoda
,
R.
,
2014
, “
Analysis of the Cavitating Flow Induced by an Ultrasonic Horn—Numerical 3D Simulation for the Analysis of Vapour Structures and the Assessment of Erosion-Sensitive Areas
,”
EPJ Web Conf.
,
67
, p.
02078
.
48.
Franc
,
J. P.
, and
Michel
,
J. M.
,
2004
,
Fundamentals of Cavitation, Fluid Mechanics and Its Applications
, Vol.
76
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
49.
Schmidt
,
S. J.
,
Thalhamer
,
M.
, and
Schnerr
,
G. H.
,
2009
, “
Inertia Controlled Instability and Small Scale Structures of Sheet and Cloud Cavitation
,”
Seventh International Symposium on Cavitation
(
CAV
), Ann Arbor, MI, Aug. 17–22.
50.
Žnidarčič
,
A.
,
Metti
,
R.
, and
Dular
,
M.
,
2015
, “
Modeling Cavitation in a Rapidly Changing Pressure Field—Application to a Small Ultrasonic Horn
,”
Ultrason. Sonochem.
,
22
, pp.
482
492
.
You do not currently have access to this content.