The aim of the study is the analysis of a uniform magnetic field effect on fluid flow, heat transfer, and entropy generation through the operation of a pulsating heat pipe (PHP). An open loop PHP with three neighboring vapor plugs and two liquid slugs has been considered. The governing equations such as momentum, energy, and mass equations are solved using an explicit method except for the energy equation of liquid slugs. For each case study, Bejan number has been derived to find the heat transfer share in entropy generation. According to the results, the performance of the oscillating heat pipe decreases by applying uniform magnetic field. Moreover, the obtained results illustrate the effects of the applied magnetic field position on the heat transfer and the entropy generation. The latent and sensible heat transfer into the PHP enhance as a result of increase in the pipe diameter, so that the liquid slugs oscillate with high amplitudes. In addition, the entropy generation value increases with an augmentation in the value of the pipe diameter. The evaluated Bejan numbers indicate that the viscous effects in entropy generation decrease as the pipe diameter increases. Furthermore, the results depict that the heat transfer performance of PHP improves by increasing temperature difference between evaporator and condenser sections. With an increase in the value of the evaporator temperature, the Bejan number will increase, as a result, this phenomenon reveals the inconsiderable role of viscous impacts in high evaporator temperatures. In order to validate the calculations, the calculated results have been compared with the previous studies which show good agreement.

References

References
1.
Shao
,
W.
, and
Zhang
,
Y.
,
2011
, “
Effects of Film Evaporation and Condensation on Oscillatory Flow and Heat Transfer in an Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
133
(
4
), p.
042901
.
2.
Ma
,
H. B.
,
Hanlon
,
M. A.
, and
Chen
,
C. L.
,
2006
, “
An Investigation of Oscillating Motions in a Miniature Pulsating Heat Pipe
,”
Microfluid. Nanofluid.
,
2
(
2
), pp.
171
179
.
3.
Mameli
,
M.
,
Marengo
,
M.
, and
Zinna
,
S.
,
2012
, “
Numerical Model of a Multi-Turn Closed Loop Pulsating Heat Pipe: Effects of the Local Pressure Losses Due to Meanderings
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
1036
1047
.
4.
Zhang
,
Y.
,
Faghri
,
A.
, and
Shafii
,
M. B.
,
2002
, “
Analysis of Liquid–Vapor Pulsating Flow in a U-Shaped Miniature Tube
,”
Int. J. Heat Mass Transfer
,
45
(
12
), pp.
2501
2508
.
5.
Shafii
,
M. B.
,
Faghri
,
A.
, and
Zhang
,
2001
, “
Thermal Modeling of Unlooped and Looped Pulsating Heat Pipes
,”
ASME J. Heat Transfer
,
123
(
6
), pp.
1159
1172
.
6.
Peng
,
H.
,
Pai
,
P. F.
, and
Ma
,
H.
,
2014
, “
Nonlinear Thermomechanical Finite-Element Modeling, Analysis and Characterization of Multi-Turn Oscillating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
69
, pp.
424
437
.
7.
Shafii
,
M. B.
,
Faghri
,
A.
, and
Zhang
,
Y.
,
2002
, “
Analysis of Heat Transfer in Unlooped and Looped Pulsating Heat Pipes
,”
Int. J. Numer. Methods Heat Fluid Flow
,
12
(
5
), pp.
585
609
.
8.
Gamit
,
H.
,
More
,
V.
,
Mukund
,
B.
, and
Mehta
,
H. B.
,
2015
, “
Experimental Investigations on Pulsating Heat Pipe
,”
Energy Procedia
,
75
, pp.
3186
3191
.
9.
Khandekar
,
S.
, and
Groll
,
M.
,
2004
, “
An Insight Into Thermo-Hydrodynamic Coupling in Closed Loop Pulsating Heat Pipes
,”
Int. J. Therm. Sci.
,
43
(
1
), pp.
13
20
.
10.
Rahman
,
M. L.
,
Saha
,
P. K.
,
Mir
,
F.
,
Totini
,
A. T.
,
Nawrin
,
S.
, and
Ali
,
M.
,
2015
, “
Experimental Investigation on Heat Transfer Characteristics of an Open Loop Pulsating Heat Pipe (OLPHP) With Fin
,”
Procedia Eng.
,
105
, pp.
113
120
.
11.
Mameli
,
M.
,
Manno
,
V.
,
Filippeschi
,
S.
, and
Marengo
,
M.
,
2014
, “
Thermal Instability of a Closed Loop Pulsating Heat Pipe: Combined Effect of Orientation and Filling Ratio
,”
Exp. Therm. Fluid Sci.
,
59
, pp.
222
229
.
12.
Charoensawan
,
P.
,
Khandekar
,
S.
,
Groll
,
M.
, and
Terdtoon
,
P.
,
2003
, “
Closed Loop Pulsating Heat Pipes—Part A: Parametric Experimental Investigations
,”
Appl. Therm. Eng.
,
23
(
16
), pp.
2009
2020
.
13.
Khandekar
,
S.
,
Gautam
,
A. P.
, and
Sharma
,
P. K.
,
2009
, “
Multiple Quasi-Steady States in a Closed Loop Pulsating Heat Pipe
,”
Int. J. Therm. Sci.
,
48
(
3
), pp.
535
546
.
14.
Tong
,
B. Y.
,
Wong
,
T. N.
, and
Ooi
,
K. T.
,
2001
, “
Closed-Loop Pulsating Heat Pipe
,”
Appl. Therm. Eng.
,
21
(
18
), pp.
1845
1862
.
15.
Selimli
,
S.
,
Recebli
,
Z.
, and
Arcaklioglu
,
E.
,
2015
, “
MHD Numerical Analyses of Hydrodynamically Developing Laminar Liquid Lithium Duct Flow
,”
Int. J. Hydrogen Energy
,
40
(
44
), pp.
15358
15364
.
16.
Kuiry
,
D. R.
, and
Bahadur
,
S.
,
2015
, “
Steady MHD Flow of Viscous Fluid Between Two Parallel Porous Plates With Heat Transfer in an Inclined Magnetic Field
,”
J. Sci. Res.
,
7
(
3
), pp.
21
31
.
17.
Li
,
F. C.
,
Kunugi
,
T.
, and
Serizawa
,
A.
,
2005
, “
MHD Effect on Flow Structures and Heat Transfer Characteristics of Liquid Metal–Gas Annular Flow in a Vertical Pipe
,”
Int. J. Heat Mass Transfer
,
48
(
12
), pp.
2571
2581
.
18.
Malekzadeh
,
A.
,
Heydarinasab
,
A.
, and
Dabir
,
B.
,
2011
, “
Magnetic Field Effect on Fluid Flow Characteristics in a Pipe for Laminar Flow
,”
J. Mech. Sci. Technol.
,
25
(
2
), pp.
333
339
.
19.
Abel
,
M. S.
,
Sanjayanand
,
E.
, and
Nandeppanavar
,
M. M.
,
2008
, “
Viscoelastic MHD Flow and Heat Transfer Over a Stretching Sheet With Viscous and Ohmic Dissipations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
(9), pp.
1808
1821
.
20.
Taghilou
,
M.
,
Ghadimi
,
B.
, and
Seyyedvalilu
,
M.
,
2014
, “
Optimization of Double Pipe Fin-Pin Heat Exchanger Using Entropy Generation Minimization
,”
Int. J. Eng. Trans. C: Aspects
,
27
(
9)
, pp.
1431
1438
.https://www.researchgate.net/publication/264042877_Optimization_of_Double_Pipe_Fin-pin_Heat_Exchanger_Using_Entropy_Generation_Minimization
21.
Mohseni
,
M.
, and
Bazargan
,
M.
,
2014
, “
Entropy Generation in Turbulent Mixed Convection Heat Transfer to Highly Variable Property Pipe Flow of Supercritical Fluids
,”
Energy Convers. Manage.
,
87
, pp.
552
558
.
22.
Jarungthammachote
,
S.
,
2010
, “
Entropy Generation Analysis for Fully Developed Laminar Convection in Hexagonal Duct Subjected to Constant Heat Flux
,”
Energy
,
35
(
12
), pp.
5374
5379
.
23.
Tandiroglu
,
A.
,
2007
, “
Effect of Flow Geometry Parameters on Transient Entropy Generation for Turbulent Flow in Circular Tube With Baffle Inserts
,”
Energy Convers. Manage.
,
48
(
3
), pp.
898
906
.
24.
Kim
,
S.
,
Zhang
,
Y.
, and
Choi
,
J.
,
2013
, “
Entropy Generation Analysis for a Pulsating Heat Pipe
,”
Heat Transfer Res.
,
44
(
1
), pp. 1–30.
25.
Butt
,
A. S.
,
Ali
,
A.
, and
Mehmood
,
A.
,
2016
, “
Numerical Investigation of Magnetic Field Effects on Entropy Generation in Viscous Flow Over a Stretching Cylinder Embedded in a Porous Medium
,”
Energy
,
99
, pp.
237
249
.
26.
Rashidi
,
M. M.
,
Kavyani
,
N.
, and
Abelman
,
S.
,
2014
, “
Investigation of Entropy Generation in MHD and Slip Flow Over a Rotating Porous Disk With Variable Properties
,”
Int. J. Heat Mass Transfer
,
70
, pp.
892
917
.
27.
Mahian
,
O.
,
Oztop
,
H.
,
Pop
,
I.
,
Mahmud
,
S.
, and
Wongwises
,
S.
,
2013
, “
Entropy Generation Between Two Vertical Cylinders in the Presence of MHD Flow Subjected to Constant Wall Temperature
,”
Int. Commun. Heat Mass Transfer
,
44
, pp.
87
92
.
28.
Torabi
,
M.
, and
Zhang
,
K.
,
2015
, “
Temperature Distribution, Local and Total Entropy Generation Analyses in MHD Porous Channels With Thick Walls
,”
Energy
,
87
, pp.
540
554
.
29.
Jafarmadar
,
S.
,
Mobadersani
,
F.
,
Mirzaee
,
I.
, and
Toolabi
,
G.
,
2016
, “
Investigation of Entropy Generation Through the Operation of an Unlooped Pulsating Heat Pipe
,”
Int. J. Eng., Trans. B: Appl.
,
29
(
8
), pp.
1151
1159
.http://www.ije.ir/abstract/%7BVolume:29-Transactions:B-Number:8%7D/=2313
30.
Khandekar
,
S.
,
Panigrahi
,
P. K.
,
Lefèvre
,
F.
, and
Bonjour
,
J.
,
2010
, “
Local Hydrodynamics of Flow in a Pulsating Heat Pipe: A Review
,”
Front. Heat Pipes (FHP)
,
1
(
2
), p.
023003
.https://www.researchgate.net/publication/48412257_Local_hydrodynamics_of_flow_in_a_pulsating_heat_pipe_A_review
31.
Darby, R.,
1999
, “
Correlate Pressure Drops Through Fittings
,”
Chem. Eng.
,
106
(
7
), pp.
101
104
.
32.
Darby, R.,
2001
, “
Correlate Pressure Drops Through Fittings
,”
Chem. Eng.
,
108
(
4
), pp.
127
130
.
33.
Shah
,
R. K.
, and
London
,
A. L.
,
1971
, “
Laminar Flow Forced Convection Heat Transfer and Flow Friction in Straight and Curved Ducts-A Summary of Analytical Solutions
,” Stanford University, Stanford, CA, Report No.
TR-75
.http://www.dtic.mil/dtic/tr/fulltext/u2/736260.pdf
34.
Bejan
,
A.
,
Forced Convection: Internal Flows
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.