The present study considers the coupled natural convection and surface radiation process through an open fracture of a solid wall facing a reservoir containing isothermal quiescent fluid (air). The fracture is modeled as a regular, C-shape path through the wall, with the vertical surface being heated and the horizontal ones adiabatic. The solid center section of the fracture is thermally participant inasmuch it can be heated or cooled by the natural convection process and by the radiation effect from the other surfaces of the fracture. The convection-radiation phenomenon is mathematically modeled and numerically simulated in a systematic parametric study of the thermal process as affected by changes in the fracture channel size, via changes in the size of the solid center section 0 < D < 1.0, surface emissivity 0 ≤ ε ≤ 1.0, Rayleigh number 105 ≤ Ra ≤ 108, and Pr = 0.71. Attention is given to the radiation shadowing effect caused by the center section of the fracture and of the interference effect, as the fracture channel changes in size, affecting the natural convection process through the fracture. An analytical prediction of the interference effect and an empirical correlation for predicting the total Nusselt number, both validated against the numerical results, are presented.

References

References
1.
House
,
J. M.
,
Beckermann
,
C.
, and
Smith
,
T. F.
,
1990
, “
Effect of a Centered Conducting Body on Natural Convection Heat Transfer in an Enclosure
,”
Numer. Heat Transfer A
,
18
(
2
), pp.
213
225
.
2.
Bhave
,
P.
,
Narasimhan
,
A.
, and
Rees
,
D. A. S.
,
2006
, “
Natural Convection Heat Transfer Enhancement Using Adiabatic Block: Optimal Block Size and Prandtl Number Effect
,”
Int. J. Heat Mass Transfer
,
49
(
21–22
), pp.
3807
3818
.
3.
Oh
,
J. Y.
,
Ha
,
M. Y.
, and
Kim
,
K. C.
,
1997
, “
Numerical Study of Heat Transfer and Flow of Natural Convection in an Enclosure With a Heat-Generating Conducting Body
,”
Numer. Heat Transfer A
,
31
(
3
), pp.
289
303
.
4.
Ha
,
M. Y.
,
Kim
,
I.
,
Yoon
,
H. S.
,
Yoon
,
K. S.
,
Lee
,
J. R.
,
Balachandar
,
S.
, and
Chun
,
H. H.
,
2002
, “
Two-Dimensional and Unsteady Natural Convection in a Horizontal Enclosure With a Square Body
,”
Numer. Heat Transfer A
,
41
(
2
), pp.
183
210
.
5.
Liu
,
D.
,
Zhao
,
F.
, and
Tang
,
G.
,
2007
, “
Conjugate Heat Transfer in an Enclosure With a Centered Conducting Body Imposed Sinusoidal Temperature Profiles on One Side
,”
Numer. Heat Transfer A
,
53
(
2
), pp.
204
223
.
6.
Ovando-Chacon
,
G. E.
,
Ovando-Chacon
,
S. L.
,
Prince-Avelino
,
J. C.
, and
Romo-Medina
,
M. A.
,
2013
, “
Numerical Study of the Heater Length Effect on the Heating of a Solid Circular Obstruction Centered in an Open Cavity
,”
Eur. J. Mech. B.
,
42
, pp.
176
185
.
7.
Sparrow
,
E. M.
, and
Abraham
,
J. P.
,
2003
, “
A Computational Analysis of the Radiative and Convective Processes Which Take Place in Preheated and Non-Preheated Ovens
,”
Heat Transfer Eng.
,
24
(
5
), pp.
25
37
.
8.
Abraham
,
J. P.
, and
Sparrow
,
E. M.
,
2003
, “
Three Dimensional Laminar and Turbulent Natural Convection in a Continuously/Discretely Wall-Heated Enclosure Containing a Thermal Load
,”
Numer. Heat Transfer A
,
44
(
2
), pp.
105
125
.
9.
Merrikh
,
A. A.
, and
Lage
,
J. L.
,
2005
, “
Natural Convection in an Enclosure With Disconnected and Conducting Solid Blocks
,”
Int. J. Heat Mass Transfer
,
48
(
7
), pp.
1361
1372
.
10.
Junqueira
,
S. L. M.
,
De Lai
,
F. C.
,
Franco
,
A. T.
, and
Lage
,
J. L.
,
2013
, “
Numerical Investigation of Natural Convection in Heterogeneous Rectangular Enclosures
,”
Heat Transfer Eng.
,
34
(
5–6
), pp.
460
469
.
11.
Qiu
,
H.
,
Lage
,
J. L.
,
Junqueira
,
S. L. M.
, and
Franco
,
A. T.
,
2013
, “
Predicting the Nusselt Number of Heterogeneous (Porous) Enclosures Using a Generic Form of the Berkovsky-Polevikov Correlations
,”
ASME J. Heat Transfer
,
135
(
8
), p.
082601
.
12.
Loyola
,
L. T.
,
Franco
,
A. T.
,
Junqueira
,
S. L. M.
,
De Lai
,
F. C.
,
Ganzarolli
,
M. M.
, and
Lage
,
J. L.
,
2013
, “
Natural Convection Through an Open Cavity Heated From the Side and Filled With Fluid and Discrete Solid Blocks
,”
ASME
Paper No. IMECE2013-66796.
13.
Mezrhab
,
A.
,
Bouali
,
H.
,
Amaoui
,
H.
, and
Boudizi
,
M.
,
2006
, “
Computation of Combined Natural-Convection and Radiation Heat-Transfer in a Cavity Having a Square Body at Its Center
,”
Appl. Energy
,
83
(
9
), pp.
1004
1023
.
14.
Lage
,
J. L.
,
Lim
,
J. S.
, and
Bejan
,
A.
,
1992
, “
Natural Convection With Radiation in a Cavity With Open Top End
,”
ASME J. Heat Transfer
,
114
(
2
), pp.
479
486
.
15.
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
1993
, “
Interaction of Surface Radiation With Free Convection in a Square Cavity
,”
Int. J. Heat Fluid Flow
,
14
(
3
), pp.
260
267
.
16.
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
1994
, “
Interaction of Radiation With Free Convection in an Open Cavity
,”
Int. J. Heat Fluid Flow
,
15
(
4
), pp.
317
324
.
17.
Mezrhab
,
A.
, and
Bchir
,
L.
,
1999
, “
Radiation-Natural Convection Interactions in Partitioned Cavities
,”
Int. J. Numer. Methods Heat Fluid Flow
,
9
(
2
), pp.
186
203
.
18.
Mezrhab
,
A.
, and
Bouzidi
,
M.
,
2005
, “
Computation of View Factors for Surfaces of Complex Shape Including Screening Effects and Using a Boundary Element Approximation
,”
Eng. Comput.
,
22
(
2
), pp.
132
148
.
19.
Hinojosa
,
J. F.
,
Estrada
,
C. A.
,
Cabanillas
,
R. E.
, and
Alvarez
,
G.
,
2005
, “
Numerical Study of Transient and Steady-State Natural Convection and Surface Thermal Radiation in a Horizontal Square Open Cavity
,”
Numer. Heat Transfer A
,
48
(
2
), pp.
179
196
.
20.
Hinojosa
,
J. F.
,
Estrada
,
C. A.
,
Cabanillas
,
R. E.
, and
Alvarez
,
G.
,
2005
, “
Nusselt Number for the Natural Convection and Surface Thermal Radiation in a Square Tilted Open Cavity
,”
Int. Commun. Heat Mass Transfer
,
32
(
9
), pp.
1184
1192
.
21.
Gonzalez
,
M. M.
,
Palafox
,
J. H.
, and
Estrada
,
C. A.
,
2012
, “
Numerical Study of Heat Transfer by Natural Convection and Surface Thermal Radiation in an Open Cavity Receiver
,”
Sol. Energy
,
86
(
4
), pp.
1118
1128
.
22.
Zhong
,
Z. Y.
,
Yang
,
K. T.
, and
Llooyd
,
J. R.
,
1985
, “
Variable Property Effects in Laminar Natural Convection in a Square Enclosure
,”
ASME J. Heat Transfer
,
107
(
1
), pp.
133
138
.
23.
Lage
,
J. L.
, and
Bejan
,
A.
,
1991
, “
The Ra-Pr Domain of Laminar Natural Convection in an Enclosure Heated From the Side
,”
Numer. Heat Transfer A
,
19
(
1
), pp.
21
41
.
24.
Singh
,
S.
, and
Venkateshan
,
S.
,
2004
, “
Numerical Study of Natural Convection With Surface Radiation in Side-Vented Open Cavities
,”
Int. J. Therm. Sci.
,
43
(
9
), pp.
865
876
.
25.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing
,
New York
.
26.
Van Doormaal
,
J. P.
, and
Raithby
,
G. D.
,
1984
, “
Enhancements of the Simple Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
,
7
(
2
), pp.
147
163
.
27.
Leonard
,
B. P.
,
1979
, “
A Stable and Accurate Convective Modeling Procedure Based on Quadratic Upstream Interpolation
,”
Comput. Methods Appl. Mech. Eng.
,
19
(
1
), pp.
59
98
.
28.
Wang
,
Z.
,
Yang
,
M.
,
Li
,
L.
, and
Zhang
,
Y.
,
2011
, “
Combined Heat Transfer by Natural Convection—Conduction and Surface Radiation in an Open Cavity Under Constant Heat Flux Heating
,”
Numer. Heat Transfer A
,
60
(
4
), pp.
289
304
.
29.
Bejan
,
A.
,
1995
,
Convection Heat Transfer
,
2nd ed.
,
Wiley
,
New York
.
You do not currently have access to this content.