Numerical investigation of natural convective heat transfer and fluid flow in a differentially heated square cavity filled with a CuO-water nanofluid having variable properties is performed. Governing partial differential equations formulated in nondimensional stream function, vorticity, temperature, and nanoparticles volume fraction are solved by the second-order accurate finite difference method and taking into account the Brownian diffusion and thermophoresis. The effects of Rayleigh number (Ra = 104–106), initial nanoparticles volume fraction (C0 = 0–0.09), location of the heater (Δ = 0.0–0.9), and dimensionless time (τ = 0–300) on flow patterns, isotherms, and concentration fields as well as the local and average Nusselt numbers at the heater surface are studied. The isoconcentrations reveal that for most of the cavity domain the nanoparticle concentration is around the initial average concentration of nanoparticles except for a very limited variation in a region close to the cavity walls that experiences minor deviation from the initial concentration. It was found that the flow strength within the cavity (i.e., ψmaxRaPr) is inversely proportional to the heater location Δ and is directly proportional to the Rayleigh number. Also, it was found that the best location of the heater, from a heat transfer perspective, is placing it entirely at the left wall of the cavity where a maximum average Nusselt number is registered. This study revealed that for all heater locations there is always an adverse impact of nanoparticles on the heat transfer and the worst case is registered for the Δ = 0 and the least deterioration is noticed for Δ = 0.9.

References

References
1.
Choi
,
U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
, Vol.
231
,
D. A.
Siginer
, and
H. P.
Wang
, eds.,
American Society of Mechanical Engineers
,
New York
, pp.
99
105
.
2.
Kleinstreuer
,
C.
, and
Feng
,
Y.
, 2011, “
Experimental and Theoretical Studies of Nanofluid Thermal Conductivity Enhancement: A Review
,”
Nanoscale Res. Lett.
,
6
, p. 229.
3.
Bianco
,
V.
,
Scarpa
,
F.
, and
Tagliafico
,
L. A.
,
2018
, “
Numerical Analysis of the Al2O3-Water Nanofluid Forced Laminar Convection in an Asymmetric Heated Channel for Application in Flat Plate PV/T Collector
,”
Renewable Energy
,
116
(Pt. A), pp.
9
21
.
4.
Ahmad
,
S. H. A.
,
Saidur
,
R.
,
Mahbubul
,
I. M.
, and
Al-Sulaiman
,
F. A.
,
2017
, “
Optical Properties of Various Nanofluids Used in Solar Collector: A Review
,”
Renewable Sustainable Energy Rev.
,
73
, pp.
1014
1030
.
5.
Yazdanifard
,
F.
,
Ameri
,
M.
, and
Ebrahimnia-Bajestan
,
E.
,
2017
, “
Performance of Nanofluid-Based Photovoltaic/Thermal Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
76
, pp.
323
352
.
6.
Putra
,
N.
,
Roetzel
,
W.
, and
Das
,
S. K.
,
2003
, “
Natural Convection of Nano-Fluids
,”
Heat Mass Transfer
,
39
(
8–9
), pp.
775
784
.
7.
Wen
,
D.
, and
Ding
,
Y.
,
2004
, “
Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
,
47
(
24
), pp.
5181
5188
.
8.
Khanafer
,
K.
,
Vafai
,
K.
, and
Lightstone
,
M.
,
2003
, “
Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
,
46
(
19
), pp.
3639
3653
.
9.
Oztop
,
H. F.
, and
Abu-Nada
,
E.
,
2008
, “
Numerical Study of Natural Convection in Partially Heated Rectangular Enclosure Filled With Nanofluids
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1326
1336
.
10.
Abu-Nada
,
E.
,
Masoud
,
Z.
,
Oztop
,
H. F.
, and
Campo
,
A.
,
2010
, “
Effect of Nanofluid Variable Properties on Natural Convection in Enclosures
,”
Int. J. Therm. Sci.
,
49
(
3
), pp.
479
491
.
11.
Abu-Nada
,
E.
,
2009
, “
Effects of Variable Viscosity and Thermal Conductivity of Al2O3–Water Nanofluid on Heat Transfer Enhancement in Natural Convection
,”
Int. J. Heat Fluid Flow
,
30
(
4
), pp.
679
690
.
12.
Abu-Nada
,
E.
, and
Chamkha
,
A. J.
,
2010
, “
Effect of Nanofluid Variable Properties on Natural Convection in Enclosures Filled With a CuO–EG–Water Nanofluid
,”
Int. J. Therm. Sci.
,
49
(
12
), pp.
2339
2352
.
13.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.
14.
Haddad
,
Z.
,
Abu-Nada
,
E.
,
Oztop
,
H. F.
, and
Mataoui
,
A.
,
2012
, “
Natural Convection in Nanofluids: Are the Thermophoresis and Brownian Motion Effects Significant in Nanofluid Heat Transfer Enhancement?
,”
Int. J. Therm. Sci.
,
57
, pp.
152
162
.
15.
Yang
,
C.
,
Li
,
W.
, and
Nakayama
,
A.
,
2013
, “
Convective Heat Transfer of Nanofluids in a Concentric Annulus
,”
Int. J. Therm. Sci.
,
71
, pp.
249
257
.
16.
Malvandi
,
A.
,
Moshizi
,
S. A.
,
Soltani
,
E. G.
, and
Ganji
,
D. D.
,
2014
, “
Modified Buongiorno's Model for Fully Developed Mixed Convection Flow of Nanofluids in a Vertical Annular Pipe
,”
Comput. Fluids
,
89
, pp.
124
132
.
17.
Malvandi
,
A.
, and
Ganji
,
D. D.
,
2016
, “
Mixed Convection of Alumina–Water Nanofluid Inside a Concentric Annulus Considering Nanoparticle Migration
,”
Particuology
,
24
, pp.
113
122
.
18.
Ho
,
C. J.
,
Chen
,
D.-S.
,
Yan
,
W.-M.
, and
Mahian
,
O.
,
2014
, “
Buoyancy-Driven Flow of Nanofluids in a Cavity Considering the Ludwig–Soret Effect and Sedimentation: Numerical Study and Experimental Validation
,”
Int. J. Heat Mass Transfer
,
77
, pp.
684
694
.
19.
Corcione
,
M.
,
Cianfrini
,
M.
, and
Quintino
,
A.
,
2013
, “
Two-Phase Mixture Modeling of Natural Convection of Nanofluids With Temperature-Dependent Properties
,”
Int. J. Therm. Sci.
,
71
, pp.
182
195
.
20.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2009
, “
Thermal Instability in a Porous Medium Layer Saturated by a Nanofluid
,”
Int. J. Heat Mass Transfer
,
52
(
25–26
), pp.
5796
5801
.
21.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2014
, “
Thermal Instability in a Porous Medium Layer Saturated by a Nanofluid: A Revised Model
,”
Int. J. Heat Mass Transfer
,
68
, pp.
211
214
.
22.
Sheremet
,
M. A.
, and
Pop
,
I.
,
2015
, “
Free Convection in a Porous Horizontal Cylindrical Annulus With a Nanofluid Using Buongiorno's Model
,”
Comput. Fluids
,
118
, pp.
182
190
.
23.
Sheremet
,
M. A.
, and
Pop
,
I.
,
2015
, “
Natural Convection in a Wavy Porous Cavity With Sinusoidal Temperature Distributions on Both Side Walls Filled With a Nanofluid: Buongiorno's Mathematical Model
,”
ASME J. Heat Transfer
,
137
(
7
), p.
072601
.
24.
Sheremet
,
M. A.
, and
Pop
,
I.
,
2014
, “
Conjugate Natural Convection in a Square Porous Cavity Filled by a Nanofluid Using Buongiorno's Mathematical Model
,”
Int. J. Heat Mass Transfer
,
79
, pp.
137
145
.
25.
Eslamian
,
M.
,
Ahmed
,
M.
,
El-Dosoky
,
M. F.
, and
Saghir
,
M. Z.
,
2015
, “
Effect of Thermophoresis on Natural Convection in a Rayleigh–Benard Cell Filled With a Nanofluid
,”
Int. J. Heat Mass Transfer
,
81
, pp.
142
156
.
26.
Pakravan
,
H. A.
, and
Yaghoubi
,
M.
,
2013
, “
Analysis of Nanoparticles Migration on Natural Convective Heat Transfer of Nanofluids
,”
Int. J. Therm. Sci.
,
68
, pp.
79
93
.
27.
Dinarvand
,
S.
,
Hosseini
,
R.
,
Abulhasansari
,
M.
, and
Pop
,
I.
,
2015
, “
Buongiorno's Model for Double-Diffusive Mixed Convective Stagnation-Point Flow of a Nanofluid Considering Diffusiophoresis Effect of Binary Base Fluid
,”
Adv. Powder Technol.
,
26
(
5
), pp.
1423
1434
.
28.
Sheikholeslami
,
M.
,
Gorji-Bandpy
,
M.
,
Ganji
,
D. D.
,
Rana
,
P.
, and
Soleimani
,
S.
,
2014
, “
Magnetohydrodynamic Free Convection of Al2O3–Water Nanofluid Considering Thermophoresis and Brownian Motion Effects
,”
Comput. Fluids
,
94
, pp.
147
160
.
29.
Bahiraei
,
M.
, and
Hosseinalipour
,
S. M.
,
2013
, “
Particle Migration in Nanofluids Considering Thermophoresis and Its Effect on Convective Heat Transfer
,”
Thermochim. Acta
,
574
, pp.
47
54
.
30.
Moraveji
,
M. K.
, and
Esmaeili
,
E.
,
2012
, “
Comparison Between Single-Phase and Two-Phases CFD Modeling of Laminar Forced Convection Flow of Nanofluids in a Circular Tube Under Constant Heat Flux
,”
Int. Commun. Heat Mass Transfer
,
39
(
8
), pp.
1297
1302
.
31.
Hajmohammadi
,
M. R.
,
2017
, “
Cylindrical Couette Flow and Heat Transfer Properties of Nanofluids; Single-Phase and Two-Phase Analyses
,”
J. Mol. Liq.
,
240
, pp.
45
55
.
32.
Albojamal
,
A.
, and
Vafai
,
K.
,
2017
, “
Analysis of Single Phase, Discrete and Mixture Models, in Predicting Nanofluid Transport
,”
Int. J. Heat Mass Transfer
,
114
, pp.
225
237
.
33.
Akbari
,
M.
,
Galanis
,
N.
, and
Behzadmehr
,
A.
,
2011
, “
Comparative Analysis of Single and Two-Phase Models for CFD Studies of Nanofluid Heat Transfer
,”
Int. J. Therm. Sci.
,
50
(
8
), pp.
1343
1354
.
34.
Chon
,
C. H.
,
Kihm
,
K. D.
,
Lee
,
S. P.
, and
Choi
,
S.
,
2005
, “
Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement
,”
Appl. Phys. Lett.
,
87
(
15
), p.
153107
.
35.
Nguyen
,
C. T.
,
Desgranges
,
F.
,
Roy
,
G.
,
Galanis
,
N.
,
Mare
,
T.
,
Boucher
,
S.
, and
Angue Minsta
,
H.
,
2007
, “
Temperature and Particle-Size Dependent Viscosity Data for Water Based Nanofluids-Hysteresis Phenomenon
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1492
1506
.
36.
Corcione
,
M.
,
2011
, “
Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids
,”
Energy Convers. Manage.
,
52
(
1
), pp.
789
793
.
37.
Sheremet
,
M. A.
,
Pop
,
I.
, and
Shenoy
,
A.
,
2015
, “
Unsteady Free Convection in a Porous Open Wavy Cavity Filled With a Nanofluid Using Buongiorno's Mathematical Model
,”
Int. Commun. Heat Mass Transfer
,
67
, pp.
66
72
.
38.
Astanina
,
M. S.
,
Sheremet
,
M. A.
, and
Umavathi
,
J. C.
,
2015
, “
Unsteady Natural Convection With Temperature-Dependent Viscosity in a Square Cavity Filled With a Porous Medium
,”
Transp. Porous Media
,
110
(
1
), pp.
113
126
.
39.
Sheremet
,
M. A.
,
Dinarvand
,
S.
, and
Pop
,
I.
,
2015
, “
Effect of Thermal Stratification on Free Convection in a Square Porous Cavity Filled With a Nanofluid Using Tiwari and Das' Nanofluid Model
,”
Physica E
,
69
, pp.
332
341
.
40.
Bondareva
,
N. S.
,
Sheremet
,
M. A.
, and
Pop
,
I.
,
2015
, “
Magnetic Field Effect on the Unsteady Natural Convection in a Right-Angle Trapezoidal Cavity Filled With a Nanofluid: Buongiorno's Mathematical Model
,”
Int. J. Numer. Methods Heat Fluid Flow
,
25
(
8
), pp.
1924
1946
.
41.
Hyun
,
J. M.
, and
Lee
,
J. W.
,
1988
, “
Transient Natural Convection in a Square Cavity of a Fluid With Temperature-Dependent Viscosity
,”
Int. J. Heat Fluid Flow
,
9
(3), pp.
278
285
.
42.
Ho
,
C. J.
,
Liu
,
W. K.
,
Chang
,
Y. S.
, and
Lin
,
C. C.
,
2010
, “
Natural Convection Heat Transfer of Alumina-Water Nanofluid in Vertical Square Enclosures: An Experimental Study
,”
Int. J. Therm. Sci.
,
49
(
8
), pp.
1345
1353
.
43.
Saghir
,
M. Z.
,
Ahadi
,
A.
,
Mohamad
,
A.
, and
Srinivasan
,
S.
,
2016
, “
Water Aluminum Oxide Nanofluid Benchmark Model
,”
Int. J. Therm. Sci.
,
109
, pp.
148
158
.
You do not currently have access to this content.