Abstract

Selective laser melting (SLM) has received increasing attention in recent years as an innovative manufacturing technique. The present SLM process only uses a single laser beam to melt and consolidate the powder, which may result in excessive evaporation. In this paper, a double beam scanning strategy is investigated in which the first laser beam preheats the powder just below the sintering point while the second laser beam completely melts the powder. An analytical solution on the temperature distribution heated by a moving laser beam in the powder-bulk domain is derived and is used to determine the critical radius of the first laser beam. The single and double beam scanning strategies are compared numerically and it is found that double beam scanning can effectively reduce material evaporation and increase the amount of powder melted in the SLM process.

References

1.
Roberson
,
D.
,
Espalin
,
D.
, and
Wicker
,
R.
,
2013
, “
3D Printer Selection: A Decision-Making Evaluation and Ranking Model
,”
Virtual Phys. Prototyping
,
8
(
3
), pp.
201
212
.
2.
Gu
,
D.
, and
Zhang
,
G.
,
2013
, “
Selective Laser Melting of Novel Nanocomposites Parts With Enhanced Tribological Performance: Nanocrystalline TiC/Ti Nanocomposites Parts Were Built Via SLM Technology and the Densification, Microstructures, Microhardness and Tribological Performance Were Investigated
,”
Virtual Phys. Prototyping
,
8
(
1
), pp.
11
18
.
3.
Wen
,
S.
,
Yan
,
C.
,
Wei
,
Q.
,
Zhang
,
L.
,
Zhao
,
X.
,
Zhu
,
W.
, and
Shi
,
Y.
,
2014
, “
Investigation and Development of Large-Scale Equipment and High Performance Materials for Powder Bed Laser Fusion Additive Manufacturing
,”
Virtual Phys. Prototyping
,
9
(
4
), pp.
213
223
.
4.
Chua
,
C. K.
,
Leong
,
K. F.
, and
Lim
,
C. S.
,
2010
,
Rapid Prototyping: Principles and Applications
,
World Scientific
,
Singapore
.
5.
Vaezi
,
M.
,
Chianrabutra
,
S.
,
Mellor
,
B.
, and
Yang
,
S.
,
2013
, “
Multiple Material Additive Manufacturing—Part 1: A Review
,”
Virtual Phys. Prototyping
,
8
(
1
), pp.
19
50
.
6.
Jardini
,
A. L.
,
Larosa
,
M. A.
,
de Carvalho Zavaglia
,
C. A.
,
Bernardes
,
L. F.
,
Lambert
,
C. S.
,
Kharmandayan
,
P.
,
Calderoni
,
D.
, and
Maciel Filho
,
R.
,
2014
, “
Customised Titanium Implant Fabricated in Additive Manufacturing for Craniomaxillofacial Surgery
,”
Virtual Phys. Prototyping
,
9
(
2
), pp.
115
125
.
7.
Loh
,
L.-E.
,
Chua
,
C.-K.
,
Yeong
,
W.-Y.
,
Song
,
J.
,
Mapar
,
M.
,
Sing
,
S.-L.
,
Liu
,
Z.-H.
, and
Zhang
,
D.-Q.
,
2015
, “
Numerical Investigation and an Effective Modelling on the Selective Laser Melting (SLM) Process With Aluminium Alloy 6061
,”
Int. J. Heat Mass Transfer
,
80
, pp.
288
300
.
8.
Loh
,
L. E.
,
Liu
,
Z. H.
,
Zhang
,
D. Q.
,
Mapar
,
M.
,
Sing
,
S. L.
,
Chua
,
C. K.
, and
Yeong
,
W. Y.
,
2014
, “
Selective Laser Melting of Aluminium Alloy Using a Uniform Beam Profile
,”
Virtual Phys. Prototyping
,
9
(
1
), pp.
11
16
.
9.
Zhang
,
D.
,
Liu
,
Z.
, and
Chua
,
C.
,
2013
, “
Investigation on Forming Process of Copper Alloys Via Selective Laser Melting
,”
High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping: Sixth International Conference on Advanced Research in Virtual and Rapid Prototyping
, Leiria, Portugal, Oct. 1–5, pp.
285
289
.
10.
Gu
,
D.
, and
Shen
,
Y.
,
2009
, “
Balling Phenomena in Direct Laser Sintering of Stainless Steel Powder: Metallurgical Mechanisms and Control Methods
,”
Mater. Des.
,
30
(
8
), pp.
2903
2910
.
11.
Liu
,
Z.
,
Chua
,
C.
,
Leong
,
K.
,
Kempen
,
K.
,
Thijs
,
L.
,
Yasa
,
E.
,
Van-Humbeeck
,
J.
, and
Kruth
,
J.
,
2011
, “
A Preliminary Investigation on Selective Laser Melting of M2 High Speed Steel
,”
Innovative Developments in Virtual and Physical Prototyping: Fifth International Conference on Advanced Research in Virtual and Rapid Prototyping
(
VRAP
), Leiria, Portugal, Sept. 28–Oct. 1, pp.
339
346
.https://lirias.kuleuven.be/handle/123456789/310762
12.
Abe
,
F.
,
Osakada
,
K.
,
Shiomi
,
M.
,
Uematsu
,
K.
, and
Matsumoto
,
M.
,
2001
, “
The Manufacturing of Hard Tools From Metallic Powders by Selective Laser Melting
,”
J. Mater. Process. Technol.
,
111
(
1–3
), pp.
210
213
.
13.
Woo
,
H.
, and
Cho
,
H.
,
1999
, “
Three-Dimensional Temperature Distribution in Laser Surface Hardening Processes
,”
Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.
,
213
(
7
), pp.
695
712
.
14.
Stephenson
,
D.
,
Jen
,
T.-C.
, and
Lavine
,
A.
,
1997
, “
Cutting Tool Temperatures in Contour Turning: Transient Analysis and Experimental Verification
,”
ASME J. Manuf. Sci. Eng.
,
119
(
4A
), pp.
494
501
.
15.
Araya
,
G.
, and
Gutierrez
,
G.
,
2006
, “
Analytical Solution for a Transient, Three-Dimensional Temperature Distribution Due to a Moving Laser Beam
,”
Int. J. Heat Mass Transfer
,
49
(
21–22
), pp.
4124
4131
.
16.
Palmer
,
J. R.
,
1995
,
High Power Laser Optics
,
Pro Se Publishing
,
San Diego, CA
.
17.
Taylor
,
R. E.
,
Groot
,
H.
,
Goerz
,
T.
,
Ferrier
,
J.
, and
Taylor
,
D. L.
,
1998
, “
Thermophysical Properties of Molten Aluminium Alloys
,”
High Temp.-High Pressures
,
30
(
3
), pp.
269
276
.
You do not currently have access to this content.