This paper describes a thermal homogenization approach to the application of a multiscale formulation for heat conduction with radiation problems in a porous material. The suggested formulation enables to evaluate the effective macroscopic thermal conductivity, based on the microscopic properties such as porosity, and can also provide the microscopic radiosity heat flux, based on the macroscopic temperature gradient field. This is done by scaling up and down between the microscopic and macroscopic models according to the suggested methodology. The proposed methodology involves a new iterative upscaling procedure, which uses heat conduction at macroscopic problem and heat transfer by conduction and radiation at microscopic problem. This reduces the required computational time, while maintaining the required level of accuracy. The suggested multiscale formulation has been verified by comparing its results with reference finite element (FE) solutions of porous (filled with air) materials examples; the results shows excellent agreement (up to 5% discrepancy) with reference solutions. The efficiency of the suggested formulation was demonstrated by solving a full-scale engineering transient problem.

References

References
1.
Daryabeigi
,
K.
,
1999
, “
Analysis and Testing of High Temperature fibrous Insulation for Reusable Launch Vehicles
,”
AIAA
Paper No. 99-1044.
2.
Kathare
,
V.
,
Davidson
,
J. H.
, and
Kulacki
,
F. A.
,
2008
, “
Natural Convection in Water-Saturated Metal Foam
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
3794
3802
.
3.
Kakac
,
S.
, and
Yener
,
Y.
,
1994
,
Convective Heat Transfer
,
2nd ed.
,
CRC Press
,
Boca Raton, FL
.
4.
Liu
,
S.
, and
Zhang
,
Y.
,
2006
, “
Multi-Scale Analysis Method for Thermal Conductivity of Porous Material With Radiation
,”
Multidiscip. Model. Mater. Struct.
,
2
(
3
), pp.
327
344
.
5.
Kikuchi
,
N.
,
Nishiwaki
,
S.
,
Ono Fonseca
,
J. S.
, and
Nelli Silva
,
E. C.
,
1998
, “
Design Optimization Method for Compliant Mechanisms and Material Microstructure
,”
Comput. Methods Appl. Mech. Eng.
,
151
(
3–4
), pp.
401
417
.
6.
Weinan
,
E.
,
Engquist
,
B.
,
Li
,
X.
,
Ren
,
W.
, and
Vanden-Eijnden
,
E.
,
2007
, “
Heterogeneous Multiscale Methods: A Review
,”
Commun. Comput. Phys.
,
2
(
3
), pp.
367
450
.http://www.global-sci.com/openaccess/v2_367.pdf
7.
Yang
,
Z.
,
Cui
,
J.
,
Sun
,
Y.
, and
Ge
,
J.
,
2015
, “
Multiscale Computation for Transient Heat Conduction Problem With Radiation Boundary Condition in Porous Materials
,”
Finite Elem. Anal. Des.
,
102–103
, pp.
7
18
.
8.
Asakum
,
Y.
,
Kanazawa
,
Y.
, and
Yamamoto
,
T.
,
2014
, “
Thermal Radiation Analysis of Packed Bed by a Homogenization Method
,”
Int. J. Heat Mass Transfer
,
73
, pp.
97
102
.
9.
Yang
,
Z.
,
Cui
,
J.
, and
Sun
,
Y.
,
2016
, “
Transient Heat Conduction Problem With Radiation Boundary Condition of Statistically Inhomogeneous Materials by Second-Order Two-Scale Method
,”
Int. J. Heat Mass Transfer
,
100
, pp.
362
377
.
10.
Asakuma
,
Y.
, and
Yamamoto
,
T.
,
2016
, “
Thermal Analysis of Porous Medium With Ellipsoidal Pores Using a Homogenization Method
,”
Heat Mass Transfer
,
52
(
10
), pp.
2113
2117
.
11.
Ma
,
Q.
, and
Cui
,
J.
,
2013
, “
Second-Order Two-Scale Analysis Method for the Heat Conductive Problem With Radiation Boundary Condition in Periodical Porous Domain
,”
Commun. Comput. Phys.
,
14
(
4
), pp.
1027
1057
.
12.
Yang
,
Z.
,
Cui
,
J.
, and
Li
,
B.
,
2014
, “
Second-Order Two-Scale Computations for Conductive—Radiative Heat Transfer Problem in Periodic Porous Materials
,”
Chin. Phys. B
,
23
(
3
), p. 030203.
13.
Ganaoui
,
K. E.
, and
Allaire
,
G.
,
2005
, “
Homogenization of a Conductive and Radiative Heat Transfer Problem
,”
ASME
Paper No. HT2005-72193.
14.
Yang
,
Z.
,
Cui
,
J. Z.
,
Nie
,
Y. F.
, and
Ma
,
Q.
,
2012
, “
The Second-Order Two-Scale Method for Heat Transfer Performances of Periodic Porous Materials With Interior Surface Radiation
,”
Comput. Model. Eng. Sci.
,
88
(
5
), pp.
419
442
.http://www.techscience.com/doi/10.3970/cmes.2012.088.419.pdf
15.
Yang
,
Z.
,
Cui
,
J. Z.
, and
Ma
,
Q.
,
2014
, “
The Second-Order Two-Scale Computation for Integrated Heat Transfer Problem With Conduction, Convection and Radiation in Periodic Porous Materials
,”
Discrete Contin. Dyn. B
,
19
(
3
), pp.
827
848
.
16.
Allaire
,
G.
, and
Ganaoui
,
K. E.
,
2009
, “
Homogenization of a Conductive and Radiative Heat Transfer Problem
,”
Multiscale Model.
,
7
(
3
), pp.
1148
1170
.
17.
Gal
,
E.
,
Ganz
,
A.
,
Chadad
,
L.
, and
Kryvoruk
,
R.
,
2008
, “
Development of a Concrete Unit Cell
,”
Int. J. Multiscale Comput. Eng.
,
6
(
5
), pp.
499
510
.
18.
Gal
,
E.
, and
Kryvoruk
,
R.
,
2011
, “
Meso-Scale Analysis of FRC Using a Two-Step Homogenization Approach
,”
Comput. Struct.
,
89
(
11–12
), pp.
921
929
.
19.
Gal
,
E.
, and
Kryvoruk
,
R.
,
2011
, “
Fiber Reinforced Concrete Properties—A Multiscale Approach
,”
Comput. Concr.
,
8
(
5
), pp.
525
539
.
20.
Grigorovitch
,
M.
, and
Gal
,
E.
,
2015
, “
The Local Response in Structures Using the Embedded Unit Cell Approach
,”
Comput. Struct.
,
157
, pp.
189
200
.
21.
Gal
,
E.
,
Suday
,
E.
, and
Waisman
,
H.
,
2013
, “
Homogenization of Materials Having Inclusions Surrounded by Layers Modeled by the Extended Finite Element Method
,”
J. Multiscale Comput. Eng.
,
11
(
3
), pp.
239
252
.
22.
Aboudi
,
J.
,
Arnold
,
S.
, and
Bednarczyk
,
B.
,
2013
,
Micromechanics of Composite Materials—A Generalized Multiscale Analysis Approach
,
Elsevier Butterworth-Heinemann
,
Oxford, UK
, pp.
541
557
.
23.
Muliana
,
A. H.
, and
Haj-Ali
,
R.
,
2008
, “
A Multi-Scale Framework for Layered Composites With Thermo-Rheologically Complex Behaviors
,”
Int. J. Solids Struct.
,
45
(
10
), pp.
2937
2963
.
24.
Haymes
,
R.
, and
Gal
,
E.
,
2017
, “
Transient Thermal Multi-Scale Analysis for Rocket Motor Case: Mechanical Homogenization Approach
,”
AIAA J. Thermophys. Heat Transfer
,
31
(
2
), pp.
324
336
.
25.
Haymes
,
R.
,
Davidy
,
A.
, and
Gal
,
E.
,
2017
, “
Practical Thermal Multi–Scale Analysis for Composite Materials—Mechanical-Orientated Approach
,”
J. Heat Transfer Eng.
(epub).
26.
Özdemir
,
I.
,
Brekelmans
,
W. A. M.
, and
Geers
,
M. G. D.
,
2008
, “
Computational Homogenization for Heat Conduction in Heterogeneous Solids
,”
Int. J. Numer. Methods Eng.
,
73
(
2
), pp.
185
204
.
27.
Monteiro
,
E.
,
Yvonnet
,
J.
, and
He
,
Q. C.
,
2008
, “
Computational Homogenization for Nonlinear Conduction in Heterogeneous Materials Using Model Reduction
,”
Comput. Mater. Sci.
,
42
(
4
), pp.
704
712
.
28.
Matine
,
A.
,
Boyard
,
N.
,
Cartraud
,
P.
,
Legrain
,
G.
, and
Jarny
,
Y.
,
2013
, “
Modeling of Thermophysical Properties in Heterogeneous Periodic Media According to a Multi-Scale Approach: Effective Conductivity Tensor and Edge Effects
,”
Int. J. Heat Mass Transfer
,
62
, pp.
586
603
.
29.
Matine
,
A.
,
Boyard
,
N.
,
Legrain
,
G.
,
Jarny
,
Y.
, and
Cartraud
,
P.
,
2015
, “
Transient Heat Conduction Within Periodic Heterogeneous Media: A Space-Time Homogenization Approach
,”
Int. J. Therm. Sci.
,
92
, pp.
217
229
.
30.
Kaminski
,
M.
,
2003
, “
Homogenization of Transient Heat Transfer Problems for Some Composite Materials
,”
Int. J. Eng. Sci.
,
41
(
1
), pp.
1
29
.
31.
Özdemir
,
I.
,
Brekelmans
,
W.
, and
Geers
,
M.
,
2008
, “
FE2 Computational Homogenization for the Thermo-Mechanical Analysis of Heterogeneous Solids
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
3–4
), pp.
602
613
.
32.
Shabana
,
Y.
, and
Noda
,
N.
,
2008
, “
Numerical Evaluation of the Thermo-Mechanical Effective Properties of a Functionally Graded Material Using the Homogenization Method
,”
Int. J. Solids Struct.
,
45
(
11–12
), pp.
3494
3506
.
33.
Ma
,
O.
,
Cui
,
J.
,
Li
,
Z.
, and
Wang
,
Z.
,
2016
, “
Second-Order Asymptotic Algorithm for Heat Conduction Problems of Periodic Composite Materials in Curvilinear Coordinates
,”
J. Comput. Appl. Math.
,
306
, pp.
87
115
.
34.
Asakuma
,
Y.
, and
Yamamoto
,
T.
,
2013
, “
Effective Thermal Conductivity With Convection and Radiation in Packed Bed
,” 25th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (
ECOS
), Perugia, Italy, June 26–29.https://www.researchgate.net/publication/267706491_Effective_thermal_conductivity_with_convection_and_radiation_in_packed_bed
35.
Allaire
,
G.
, and
Habibi
,
Z.
,
2013
, “
Homogenization of a Conductive, Convective and Radiative Heat Transfer Problem in a Heterogeneous Domain
,”
SIAM J. Math. Anal.
,
45
(
3
), pp.
1136
1178
.
36.
Asakuma
,
Y.
, and
Yamamoto
,
T.
,
2013
, “
Effective Thermal Conductivity of Porous Materials and Composites as a Function of Fundamental Structural Parameters
,”
Comput. Assisted Methods Eng. Sci.
,
20
(
2
), pp.
89
98
.http://cames.ippt.gov.pl/index.php/cames/article/view/70
37.
Kouznetsova
,
V. G.
,
2002
, “
Computational Homogenization for the Multi-Scale Analysis of Multi-Phase Materials
,”
Ph.D. dissertation
, Technische Universiteit Eindhoven, Eindhoven, The Netherlands.https://pure.tue.nl/ws/files/3129502/200213807.pdf
38.
Argatov
,
I.
, and
Mishuris
,
G.
,
2011
,
Asymptotic Methods in Mechanics
,
Aberystwyth University
,
Aberystwyth, UK
, pp.
90
95
.
39.
Yuan
,
Z.
, and
Fish
,
J.
,
2008
, “
Towards Realization of Computational Homogenization in Practice
,”
Int. J. Numer. Methods Eng.
,
73
(
3
), pp.
361
380
.
40.
Liu
,
G. R.
,
1997
, “
A Step-by-Step Method of Rule-of-Mixture of Fiber- and Particle-Reinforced Composite Materials
,”
Compos. Struct.
,
40
(
3–4
), pp.
313
322
.
You do not currently have access to this content.