In the present study, turbulent forced and mixed convection heat transfer to a liquid metal flowing upwards in a concentric annulus is numerically investigated by means of large eddy simulation (LES). The inner-to-outer radius ratio is 0.5. The Reynolds number based on bulk velocity and hydraulic diameter is 8900, while the Prandtl number is set to a value of 0.026. A uniform and equal heat flux is applied on both walls. LES has been chosen to provide sufficiently accurate results for validating Reynolds-averaged turbulence models. Moreover, with the thermal sublayer thickness of liquid metals being much larger than the viscous hydrodynamic one, liquid metals present a separation between the turbulent thermal and hydrodynamic scales. Thus, with the same grid resolution, it is possible to perform a LES for the flow field and a “thermal” direct numerical simulation (DNS) for the temperature field. Comparison of the forced convection results with available DNS simulations shows satisfying agreement. Results for mixed convection are analyzed and the differences with respect to forced convection at the same Reynolds number are thoroughly discussed. Moreover, where possible, a comparison with air is made.

References

1.
Pacio
,
J.
,
Daubner
,
M.
,
Fellmoser
,
F.
,
Litfin
,
K.
,
Marocco
,
L.
,
Stieglitz
,
R.
,
Taufall
,
S.
, and
Wetzel
,
T.
,
2014
, “
Heavy-Liquid Metal Heat Transfer Experiment in a 19-Rod Bundle With Grid Spacers
,”
Nucl. Eng. Des.
,
273
, pp.
33
46
.
2.
Litfin
,
K.
,
Batta
,
A.
,
Class
,
A.
,
Wetzel
,
T.
, and
Stieglitz
,
R.
,
2011
, “
Investigation on Heavy Liquid Metal Cooling of ADS Fuel Pin Assemblies
,”
J. Nucl. Mater.
,
415
(
3
), pp.
425
432
.
3.
Flesch
,
J.
,
Fritsch
,
A.
,
Cammi
,
G.
,
Marocco
,
L.
,
Fellmoser
,
F.
,
Pacio
,
J.
, and
Wetzel
,
T.
,
2015
, “
Construction of a Test Facility for Demonstration of a Liquid Lead-Bismuth-Cooled 10 kW Thermal Receiver in a Solar Furnace Arrangement—SOMMER
,”
Energy Procedia
,
69
, pp.
1259
1268
.
4.
Marocco
,
L.
,
Cammi
,
G.
,
Flesch
,
J.
, and
Wetzel
,
T.
,
2016
, “
Numerical Analysis of a Solar Tower Receiver Tube Operated With Liquid Metals
,”
Int. J. Therm. Sci.
,
105
, pp.
22
35
.
5.
Pacio
,
J.
,
Marocco
,
L.
, and
Wetzel
,
T.
,
2015
, “
Review of Data and Correlations for Turbulent Forced Convective Heat Transfer of Liquid Metals in Pipes
,”
Heat Mass Transfer
,
51
(
2
), pp.
153
164
.
6.
Jackson
,
J.
,
Cotton
,
M.
, and
Axcell
,
B. P.
,
1989
, “
Studies of Mixed Convection in Vertical Tubes
,”
Int. J. Heat Fluid Flow
,
10
(
1
), pp.
2
15
.
7.
Marocco
,
L.
,
Alberti di Valmontana
,
A.
, and
Wetzel
,
T.
,
2017
, “
Numerical Investigation of Turbulent Aided Mixed Convection of Liquid Metal Flow Through a Concentric Annulus
,”
Int. J. Heat Mass Transfer
,
105
, pp.
479
494
.
8.
Buhr
,
H. O.
,
Horsten
,
E. A.
, and
Carr
,
A. D.
,
1974
, “
The Distortion of Turbulent Velocity and Temperature Profiles on Heating, for Mercury in a Vertical Pipe
,”
ASME J. Heat Transfer
,
96
(
2
), pp.
152
158
.
9.
Jackson
,
J.
,
Axcell
,
B.
, and
Walton
,
A.
,
1994
, “
Mixed Convection Heat Transfer to Sodium in a Vertical Pipe
,”
Exp. Heat Transfer
,
7
(1), pp.
71
90
.
10.
Marocco
,
L.
,
Loges
,
A.
,
Wetzel
,
T.
, and
Stieglitz
,
R.
,
2012
, “
Experimental Investigation of the Turbulent Heavy Liquid Metal Heat Transfer in the Thermal Entry Region of a Vertical Annulus With Constant Heat Flux on the Inner Surface
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6435
6445
.
11.
Grötzbach
,
G.
,
2013
, “
Challenges in Low-Prandtl Number Heat Transfer Simulation and Modelling
,”
Nucl. Eng. Des.
,
264
, pp.
41
55
.
12.
Duponcheel
,
M.
,
Bricteux
,
L.
,
Manconi
,
M.
,
Winckelmans
,
G.
, and
Bartosiewicz
,
Y.
,
2014
, “
Assessment of RANS and Improved Near-Wall Modeling for Forced Convection at Low Prandtl Numbers Based on LES Up to Reτ = 2000
,”
Int. J. Heat Mass Transfer
,
75
, pp.
470
482
.
13.
Lilly
,
D.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A
,
4
(
3
), pp.
633
635
.
14.
Greenshields
,
C.
,
2016
, “
OpenFOAM User Guide Version 4.0
,”
OpenFOAM Foundation Ltd
., London.
15.
Chung
,
S. Y.
,
Rhee
,
G. H.
, and
Sung
,
H. J.
,
2002
, “
Direct Numerical Simulation of Turbulent Concentric Annular Pipe Flow—Part 1: Flow Field
,”
Int. J. Heat Fluid Flow
,
23
(
4
), pp.
426
440
.
16.
Ould-Rouiss
,
M.
,
Redjem-Saad
,
L.
,
Lauriat
,
G.
, and
Mazouz
,
A.
,
2010
, “
Effect of Prandtl Number on the Turbulent Thermal Field in Annular Pipe Flow
,”
Int. Commun. Heat Mass
,
37
(
8
), pp.
958
963
.
17.
Liu
,
N.
, and
Lu
,
X.
,
2004
, “
Large Eddy Simulation of Turbulent Concentric Annular Channel Flows
,”
Int. J. Numer. Methods Fluids
,
45
(
1
), pp.
1317
1338
.
18.
Kays
,
W.
, and
Leung
,
E.
,
1963
, “
Heat Transfer in Annular Passages—Hydrodynamically Developed Turbulent Flow With Arbitrarily Prescribed Heat Flux
,”
Int. J. Heat Mass Transfer
,
6
(
7
), pp.
537
557
.
19.
Kader
,
B.
,
1981
, “
Temperature and Concentration Profiles in Fully Turbulent Boundary Layers
,”
Int. J. Heat Mass Transfer
,
24
(
9
), pp.
1541
1544
.
20.
Kim
,
W.
,
He
,
S.
, and
Jackson
,
J.
,
2008
, “
Assessment by Comparison With DNS Data of Turbulence Models Used in Simulations of Mixed Convection
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1293
1312
.
21.
Kays
,
W.
,
1994
, “
Turbulent Prandtl Number—Where Are We?
,”
ASME J. Heat Transfer
,
116
(
2
), pp.
284
295
.
22.
Tiselj
,
I.
,
2014
, “
Tracking of Large-Scale Structures in Turbulent Channel With Direct Numerical Simulation of Low Prandtl Number Passive Scalar
,”
Phys. Fluids
,
26
(
12
), p.
125111
.
23.
Garita
,
F.
,
2017
, “
Large Eddy Simulation of Turbulent Forced and Mixed Convection to a Liquid Metal Flowing in an Annulus
,”
Master's thesis
, Politecnico di Milano, Milan, Italy.
You do not currently have access to this content.