Mixed convection heat transfer of Al2O3 nanofluid in a lid-driven square cavity with differentially heated vertical walls is studied numerically with lattice Boltzmann method (LBM). In order to understand the reasons for the conflicting results on heat transfer enhancement in cavity problems, formulation of nondimensional properties and modeling thermophysical properties, in accordance with the relative effects of natural and forced convection flows, are examined. In addition to gain more insight into the physics, one of the goals of the study is to identify the reasons of existing contradictory findings; therefore, a single-phase formulation is adopted as has been the case in the majority of related literature to date. To isolate the effects of thermophysical properties on the results and to maintain the same natural and forced convection effects, all nondimensional parameters are defined using the corresponding thermophysical properties of the fluid under examination. Two different effective thermal conductivity and viscosity models are tested for a range of Reynolds and Rayleigh numbers to investigate their effects on the nanofluid behavior. Depending on the effective viscosity model, an increase or decrease is obtained in the average Nusselt number. It is also illustrated that the relative magnitudes of effective thermal conductivity values for different models do not translate into the heat transfer enhancement due to convective effects. Moreover, it is shown that thermal behavior of nanofluid approaches to the one of base fluid's as the buoyancy driven flow gets stronger, which is independent of the employed effective property models.

References

1.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
, and
Hishinuma
,
N.
,
1993
, “
Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of Al2O3, SiO2 and TiO2 Ultra-Fine Particles)
,”
Netsu Bussei
,
4
(
4
), pp.
227
233
.
2.
Choi
,
S. U. S.
, and Eastman, J. A.,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,” International Mechanical Engineering Congress and Exhibition, San Francisco, CA, Nov. 12–17.
3.
Das
,
S. K.
,
Choi
,
S. U. S.
, and
Patel
,
H. E.
,
2006
, “
Heat Transfer in Nanofluids—A Review
,”
Heat Transfer Eng.
,
27
(
10
), pp.
3
19
.
4.
Wang
,
X. Q.
, and
Mujumdar
,
A. S.
,
2007
, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
,
46
(
1
), pp.
1
19
.
5.
Kakac
,
S.
, and
Pramuanjaroenkij
,
A.
,
2009
, “
Review of Convective Heat Transfer Enhancement With Nanofluids
,”
Int. J. Heat Mass Transfer
,
52
(
13
), pp.
3187
3196
.
6.
Wang
,
X.
,
Xu
,
X.
, and
Choi
,
S. U. S.
,
1999
, “
Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
J. Thermophys. Heat Transfer
,
13
(
4
), pp.
474
480
.
7.
Maı¨ga
,
S. E.
,
Nguyen
,
C. T.
,
Galanis
,
N.
, and
Roy
,
G.
,
2004
, “
Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube
,”
Superlattices Microstruct.
,
35
(
3–6
), pp.
543
557
.
8.
Chon
,
C. H.
,
Kihm
,
K. D.
,
Lee
,
S. P.
, and
Choi
,
S. U. S.
,
2005
, “
Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement
,”
Appl. Phys. Lett.
,
87
(
15
), pp.
3107
3109
.
9.
Murshed
,
S. M.
,
Leong
,
K. C.
, and
Yang
,
C.
,
2008
, “
Investigations of Thermal Conductivity and Viscosity of Nanofluids
,”
Int. J. Therm. Sci.
,
47
(
5
), pp.
560
567
.
10.
Mintsa
,
H. A.
,
Roy
,
G.
,
Nguyen
,
C. T.
, and
Doucet
,
D.
,
2009
, “
New Temperature Dependent Thermal Conductivity Data for Water-Based Nanofluids
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
363
371
.
11.
Khanafer
,
K.
,
Vafai
,
K.
, and
Lightstone
,
M.
,
2003
, “
Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
,
46
(
19
), pp.
3639
3653
.
12.
Oztop
,
H. F.
, and
Abu-Nada
,
E.
,
2008
, “
Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled With Nanofluids
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1326
1336
.
13.
Santra
,
A. K.
,
Sen
,
S.
, and
Chakraborty
,
N.
,
2008
, “
Study of Heat Transfer Augmentation in a Differentially Heated Square Cavity Using Copper–Water Nanofluid
,”
Int. J. Therm. Sci.
,
47
(
9
), pp.
1113
1122
.
14.
Ho
,
C. J.
,
Chen
,
M. W.
, and
Li
,
Z. W.
,
2008
, “
Numerical Simulation of Natural Convection of Nanofluid in a Square Enclosure: Effects Due to Uncertainties of Viscosity and Thermal Conductivity
,”
Int. J. Heat Mass Transfer
,
51
(
17–18
), pp.
4506
4516
.
15.
He
,
Y.
,
Qi
,
C.
,
Hu
,
Y.
,
Qin
,
B.
,
Li
,
F.
, and
Ding
,
Y.
,
2011
, “
Lattice Boltzmann Simulation of Alumina-Water Nanofluid in a Square Cavity
,”
Nanoscale Res. Lett.
,
6
(
1
), pp.
184
191
.
16.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solution
,”
J. Chem. Phys.
,
20
(
4
), pp.
571
581
.
17.
Maxwell
,
J. C.
,
1873
,
A Treatise on Electricity and Magnetism
, 2nd ed.,
Clarendon Press
,
Oxford, UK
.
18.
Putra
,
N.
,
Roetzel
,
W.
, and
Das
,
S. K.
,
2003
, “
Natural Convection of Nano-Fluids
,”
Heat Mass Transfer
,
39
(
8–9
), pp.
775
784
.
19.
Wen
,
D.
, and
Ding
,
Y.
,
2005
, “
Formulation of Nanofluids for Natural Convective Heat Transfer Applications
,”
Int. J. Heat Fluid Flow
,
26
(
6
), pp.
855
864
.
20.
Ho
,
C. J.
,
Liu
,
W. K.
,
Chang
,
Y. S.
, and
Lin
,
C. C.
,
2010
, “
Natural Convection Heat Transfer of Alumina-Water Nanofluid in Vertical Square Enclosures: An Experimental Study
,”
Int. J. Therm. Sci.
,
49
(
8
), pp.
1345
1353
.
21.
Talebi
,
F.
,
Mahmoudi
,
A. H.
, and
Shahi
,
M.
,
2010
, “
Numerical Study of Mixed Convection Flows in a Square Lid-Driven Cavity Utilizing Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
37
(
1
), pp.
79
90
.
22.
Nemati
,
H.
,
Farhadi
,
M.
,
Sedighi
,
K.
,
Fattahi
,
E.
, and
Darzi
,
A. A. R.
,
2010
, “
Lattice Boltzmann Simulation of Nanofluid in Lid-Driven Cavity
,”
Int. Commun. Heat Mass Transfer
,
37
(
10
), pp.
1528
1534
.
23.
Muthtamilselvan
,
M.
,
Kandaswamy
,
P.
, and
Lee
,
J.
,
2010
, “
Heat Transfer Enhancement of Copper-Water Nanofluids in a Lid-Driven Enclosure
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
6
), pp.
1501
1510
.
24.
Chamkha
,
A. J.
, and
Abu-Nada
,
E.
,
2012
, “
Mixed Convection Flow in Single-and Double-Lid Driven Square Cavities Filled With Water–Al2O3 Nanofluid: Effect of Viscosity Models
,”
Eur. J. Mech., B: Fluids
,
36
, pp.
82
96
.
25.
Pourmahmoud
,
N.
,
Ghafouri
,
A.
, and
Mirzaee
,
I.
,
2015
, “
Numerical Study of Mixed Convection Heat Transfer in Lid-Driven Cavity Utilizing Nanofluid
,”
Therm. Sci.
,
19
(
5
), pp.
1575
1590
.
26.
Chen
,
C. L.
,
Chang
,
S. C.
,
Chen
,
C. K.
, and
Chang
,
C. K.
,
2015
, “
Lattice Boltzmann Simulation for Mixed Convection of Nanofluids in a Square Enclosure
,”
Appl. Math. Modell.
,
39
(
8
), pp.
2436
2451
.
27.
Sheikholeslami
,
M.
,
Hayat
,
T.
, and
Alsaedi
,
A.
,
2017
, “
Numerical Simulation of Nanofluid Forced Convection Heat Transfer Improvement in Existence of Magnetic Field Using Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
108
(
Pt. B
), pp.
1870
1883
.
28.
Sheikholeslami
,
M.
,
2017
, “
Magnetohydrodynamic Nanofluid Forced Convection in a Porous Lid Driven Cubic Cavity Using Lattice Boltzmann Method
,”
J. Mol. Liq.
,
231
, pp.
555
565
.
29.
Benzi
,
R.
,
Succi
,
S.
, and
Vergassola
,
M.
,
1992
, “
The Lattice Boltzmann Equation: Theory and Applications
,”
Phys. Rep.
,
222
(
3
), pp.
145
197
.
30.
Chen
,
S.
, and
Doolen
,
G. D.
,
1998
, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
329
364
.
31.
Succi
,
S.
,
2001
,
The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond
,
Oxford University Press
,
New York
.
32.
He
,
X.
,
Chen
,
S.
, and
Doolen
,
G. D.
,
1998
, “
A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit
,”
J. Comput. Phys.
,
146
(
1
), pp.
282
300
.
33.
Peng
,
Y.
,
Shu
,
C.
, and
Chew
,
Y. T.
,
2003
, “
Simplified Thermal Lattice Boltzmann Model for Incompressible Thermal Flows
,”
Phys. Rev. E
,
68
(
2
), p.
026701
.
34.
Jafari
,
M.
,
Farhadi
,
M.
, and
Fattahi
,
E.
,
2011
, “
Numerical Simulation of Convection Heat Transfer in a Lid-Driven Cavity With an Open Side
,”
World Acad. Sci., Eng. Technol. Int. J. Mech. Mechatronics Eng.
,
5
(
11
), pp.
2131
2135
.https://waset.org/Publication/numerical-simulation-of-convection-heat-transfer-in-a-lid-driven-cavity-with-an-open-side/11893
35.
Kefayati
,
G. R.
,
Gorji-Bandpy
,
M.
,
Sajjadi
,
H.
, and
Ganji
,
D. D.
,
2012
, “
Lattice Boltzmann Simulation of MHD Mixed Convection in a Lid-Driven Square Cavity With Linearly Heated Wall
,”
Sci. Iran.
,
19
(
4
), pp.
1053
1065
.
36.
Sheikholeslami
,
M.
,
2017
, “
Influence of Magnetic Field on Nanofluid Free Convection in an Open Porous Cavity by Means of Lattice Boltzmann Method
,”
J. Mol. Liq.
,
234
, pp.
364
374
.
37.
Sheikholeslami
,
M.
, and
Sadoughi
,
M.
,
2017
, “
Mesoscopic Method for MHD Nanofluid Flow Inside a Porous Cavity Considering Various Shapes of Nanoparticles
,”
Int. J. Heat Mass Transfer
,
113
, pp.
106
114
.
38.
Mohamad
,
A. A.
,
2011
,
Lattice Boltzmann Method: Fundamentals and Engineering Applications With Computer Codes
,
Springer Science and Business Media
,
New York
.
39.
de Vahl Davis
,
G.
,
1983
, “
Natural Convection of Air in a Square Cavity: A Bench Mark Numerical Solution
,”
Int. J. Numer. Methods Fluids
,
3
(
3
), pp.
249
264
.
40.
Markatos
,
N. C.
, and
Pericleous
,
K. A.
,
1984
, “
Laminar and Turbulent Natural Convection in an Enclosed Cavity
,”
Int. J. Heat Mass Transfer
,
27
(
5
), pp.
755
772
.
41.
Ghia
,
U.
,
Ghia
,
K. N.
, and
Shin
,
C. T.
,
1982
, “
High-Re Solutions for Incompressible Flow Using the Navier–Stokes Equations and a Multigrid Method
,”
J. Comput. Phys.
,
48
(
3
), pp.
387
411
.
42.
Boulahia
,
Z.
,
Wakif
,
A.
, and
Sehaqui
,
R.
,
2016
, “
Numerical Investigation of Mixed Convection Heat Transfer of Nanofluid in a Lid Driven Square Cavity With Three Triangular Heating Blocks
,”
Int. J. Comput. Appl.
,
143
(
6
), pp.
37
45
.
43.
Rahmati
,
A. R.
,
Roknabadi
,
A. R.
, and
Abbaszadeh
,
M.
,
2016
, “
Numerical Simulation of Mixed Convection Heat Transfer of Nanofluid in a Double Lid-Driven Cavity Using Lattice Boltzmann Method
,”
Alexandria Eng. J.
,
55
(
4
), pp.
3101
3114
.
You do not currently have access to this content.