Heat transfer analysis for a water droplet on micropost arrays is carried out while mimicking the environmental conditions. Since the micropost arrays spacing size alters the state of the hydrophilicity of the surface, the size of the micropost arrays spacing is varied and the resulting heat transfer characteristics are analyzed. Spreading rate of water droplet on the micropost arrays is considered and the adhesion force for the pinning of the water droplet on the micropost arrays is presented. Temperature and flow fields are predicted and the predictions of flow velocity inside the water droplet are validated through the particle image velocimetry (PIV). The Nusselt number variation for various sizes of the micropost arrays is obtained for two droplet volumes. It is found that reducing the solid fraction of micropost array beyond ϕs = 0.25, the Cassie and Baxter state of the surface changes to the Wenzel state; in which case, hydrophobic characteristics changes to hydrophilic characteristics for the water droplet. Heat transfer from the droplet bottom gives rise to development of the buoyancy and the Marangoni currents, which in turn generate two counter rotating circulation cells. The center of circulation cells moves further in the droplet upper part for the hydrophobic droplet case. The Nusselt number attains high values for the hydrophobic droplet at micropost array spacing size b = 10 μm and hydrophobic droplet at spacing size b = 50 μm due to fin effects of the micropost arrays.

References

References
1.
Quan
,
Y.-Y.
,
Zhang
,
L.-Z.
,
Qi
,
R.-H.
, and
Cai
,
R.-R.
,
2016
, “
Self-Cleaning of Surfaces: The Role of Surface Wettability and Dust Types
,”
Sci. Rep.
,
6
, p.
38239
.
2.
Han
,
J. T.
,
Xu
,
X.
, and
Cho
,
K.
,
2005
, “
Diverse Access to Artificial Superhydrophobic Surfaces Using Block Copolymers
,”
Langmuir
,
21
(
15
), pp.
6662
6665
.
3.
Shirtcliffe
,
N. J.
,
McHale
,
G.
,
Newton
,
M. I.
,
Chabrol
,
G.
, and
Perry
,
C. C.
,
2004
, “
Dual‐Scale Roughness Produces Unusually Water‐Repellent Surfaces
,”
Adv. Mater.
,
16
(
21
), pp.
1929
1932
.
4.
Kinoshita
,
H.
,
Ogasahara
,
A.
,
Fukuda
,
Y.
, and
Ohmae
,
N.
,
2010
, “
Superhydrophobic/Superhydrophilic Micropatterning on a Carbon Nanotube Film Using a Laser Plasma-Type Hyperthermal Atom Beam Facility
,”
Carbon
,
48
(
15
), pp.
4403
4408
.
5.
Latthe
,
S. S.
,
Imai
,
H.
,
Ganesan
,
V.
, and
Rao
,
A. V.
,
2009
, “
Superhydrophobic Silica Films by Sol–Gel Co-Precursor Method
,”
Appl. Surf. Sci.
,
256
(
1
), pp.
217
222
.
6.
Ma
,
M.
,
Mao
,
Y.
,
Gupta
,
M.
,
Gleason
,
K. K.
, and
Rutledge
,
G. C.
,
2005
, “
Superhydrophobic Fabrics Produced by Electrospinning and Chemical Vapor Deposition
,”
Macromolecules
,
38
(
23
), pp.
9742
9748
.
7.
Yilbas
,
B.
,
Khaled
,
M.
,
Abu-Dheir
,
N.
,
Al-Aqeeli
,
N.
,
Said
,
S.
,
Ahmed
,
A.
,
Varanasi
,
K.
, and
Toumi
,
Y.
,
2014
, “
Wetting and Other Physical Characteristics of Polycarbonate Surface Textured Using Laser Ablation
,”
Appl. Surf. Sci.
,
320
, pp.
21
29
.
8.
Zhang
,
X.
,
Guo
,
Y.
,
Zhang
,
P.
,
Wu
,
Z.
, and
Zhang
,
Z.
,
2010
, “
Superhydrophobic CuO@Cu2S Nanoplate Vertical Arrays on Copper Surfaces
,”
Mater. Lett.
,
64
(
10
), pp.
1200
1203
.
9.
Liu
,
J.
,
Ashmkhan
,
M.
,
Dong
,
G.
,
Wang
,
B.
, and
Yi
,
F.
,
2013
, “
Fabrication of Micro-Nano Surface Texture by CsCl Lithography With Antireflection and Photoelectronic Properties for Solar Cells
,”
Sol. Energy Mater. Sol. Cells
,
108
, pp.
93
97
.
10.
Samuel
,
B.
,
Zhao
,
H.
, and
Law
,
K.-Y.
,
2011
, “
Study of Wetting and Adhesion Interactions Between Water and Various Polymer and Superhydrophobic Surfaces
,”
J. Phys. Chem. C
,
115
(
30
), pp.
14852
14861
.
11.
Zhang
,
T.
,
Alvarado
,
J. L.
,
Muthusamy
,
J.
,
Kanjirakat
,
A.
, and
Sadr
,
R.
,
2017
, “
Heat Transfer Characteristics of Double, Triple and Hexagonally-Arranged Droplet Train Impingement Arrays
,”
Int. J. Heat Mass Transfer
,
110
, pp.
562
575
.
12.
Zubkov
,
V.
,
Cossali
,
G.
,
Tonini
,
S.
,
Rybdylova
,
O.
,
Crua
,
C.
,
Heikal
,
M.
, and
Sazhin
,
S.
,
2017
, “
Mathematical Modelling of Heating and Evaporation of a Spheroidal Droplet
,”
Int. J. Heat Mass Transfer
,
108
(
Pt. B
), pp.
2181
2190
.
13.
Al-Sharafi
,
A.
,
Yilbas
,
B. S.
,
Sahin
,
A. Z.
,
Ali
,
H.
, and
Al-Qahtani
,
H.
,
2016
, “
Heat Transfer Characteristics and Internal Fluidity of a Sessile Droplet on Hydrophilic and Hydrophobic Surfaces
,”
Appl. Therm. Eng.
,
108
, pp.
628
640
.
14.
Moon
,
J. H.
,
Cho
,
M.
, and
Lee
,
S. H.
,
2016
, “
Dynamic Wetting and Heat Transfer Characteristics of a Liquid Droplet Impinging on Heated Textured Surfaces
,”
Int. J. Heat Mass Transfer
,
97
, pp.
308
317
.
15.
Jung
,
J.
,
Jeong
,
S.
, and
Kim
,
H.
,
2016
, “
Investigation of Single-Droplet/Wall Collision Heat Transfer Characteristics Using Infrared Thermometry
,”
Int. J. Heat Mass Transfer
,
92
, pp.
774
783
.
16.
Wang
,
Z.
,
Xing
,
Y.
,
Liu
,
X.
,
Zhao
,
L.
, and
Ji
,
Y.
,
2016
, “
Computer Modeling of Droplets Impact on Heat Transfer During Spray Cooling Under Vibration Environment
,”
Appl. Therm. Eng.
,
107
, pp.
453
462
.
17.
Hays
,
R.
,
Maynes
,
D.
, and
Crockett
,
J.
,
2016
, “
Thermal Transport to Droplets on Heated Superhydrophobic Substrates
,”
Int. J. Heat Mass Transfer
,
98
, pp.
70
80
.
18.
Venkatesan
,
J.
,
Rajasekaran
,
S.
,
Das
,
A.
, and
Ganesan
,
S.
,
2016
, “
Effects of Temperature-Dependent Contact Angle on the Flow Dynamics of an Impinging Droplet on a Hot Solid Substrate
,”
Int. J. Heat Fluid Flow
,
62
(
Pt. B
), pp.
282
298
.
19.
Yang
,
Z.
,
Ma
,
X.-C.
,
Duan
,
Y.-Y.
, and
Chen
,
Y.
,
2013
, “
Internal Flow and Heat Transfer of a Condensing Water Droplet in Steam Flow
,”
Chem. Eng. Sci.
,
94
, pp.
54
59
.
20.
Clavijo
,
C. E.
,
Crockett
,
J.
, and
Maynes
,
D.
,
2017
, “
Hydrodynamics of Droplet Impingement on Hot Surfaces of Varying Wettability
,”
Int. J. Heat Mass Transfer
,
108
(
Pt. B
), pp.
1714
1726
.
21.
Zheng
,
Z.
,
Zhou
,
L.
,
Du
,
X.
, and
Yang
,
Y.
,
2016
, “
Numerical Investigation on Conjugate Heat Transfer of Evaporating Thin Film in a Sessile Droplet
,”
Int. J. Heat Mass Transfer
,
101
, pp.
10
19
.
22.
Al-Sharafi
,
A.
,
Yilbas
,
B. S.
,
Sahin
,
A. Z.
, and
Ali
,
H.
,
2017
, “
Flow Field Inside a Sessile Droplet on a Hydrophobic Surface in Relation to Self-Cleaning Applications of Dust Particles
,”
ASME J. Heat Transfer
,
139
(
4
), p.
042003
.
23.
Al-Sharafi
,
A.
,
Yilbas
,
B. S.
,
Ali
,
H.
, and
Sahin
,
A. Z.
,
2016
, “
Internal Fluidity of a Sessile Droplet With the Presence of Particles on a Hydrophobic Surface
,”
Numer. Heat Transfer, Part A: Appl.
,
70
(
10
), pp.
1118
1140
.
24.
Mahadevan
,
L.
, and
Pomeau
,
Y.
,
1999
, “
Rolling Droplets
,”
Phys. Fluids
,
11
(
9
), pp.
2449
2453
.
25.
Tam
,
D.
,
von Arnim
,
V.
,
McKinley
,
G.
, and
Hosoi
,
A.
,
2009
, “
Marangoni Convection in Droplets on Superhydrophobic Surfaces
,”
J. Fluid Mech.
,
624
, pp.
101
123
.
26.
Lu
,
G.
,
Duan
,
Y.-Y.
,
Wang
,
X.-D.
, and
Lee
,
D.-J.
,
2011
, “
Internal Flow in Evaporating Droplet on Heated Solid Surface
,”
Int. J. Heat Mass Transfer
,
54
(
19
), pp.
4437
4447
.
27.
COMSOL,
2017
, “COMSOL,” COMSOL Inc., Burlington, MA, accessed Jan. 24, 2018, http://www.comsol.com/comsol-multiphysics
28.
Mackenzie
,
J.
, and
Mekwi
,
W.
,
2012
, “
An Unconditionally Stable Second-Order Accurate ALE–FEM Scheme for Two-Dimensional Convection–Diffusion Problems
,”
IMA J. Numer. Anal.
,
32
(
3
), pp.
888
905
.
29.
Zografos
,
A. I.
,
Martin
,
W. A.
, and
Sunderland
,
J. E.
,
1987
, “
Equations of Properties as a Function of Temperature for Seven Fluids
,”
Comput. Methods Appl. Mech. Eng.
,
61
(
2
), pp.
177
187
.
30.
Al-Sharafi
,
A.
,
Yilbas
,
B. S.
, and
Ali
,
H.
, 2017, “
Heat Transfer and Fluid Flow Characteristics in a Sessile Droplet on Oil-Impregnated Surface Under Thermal Disturbance
,”
ASME J. Heat Transfer
,
139
(9), p. 092004.
31.
Ismail, A.
,
Grest, G. S.
,
Stevens, M. J.
,
Heine, D. R.
, and
Tsige, M.
,
2017
, “Interfacial Properties of PDMS-Water Systems,” Sandia National Laboratory, Albuquerque, NM, accessed Jan. 24, 2017, https://www.osti.gov/scitech/servlets/purl/1264508
32.
Smith
,
J. D.
,
Dhiman
,
R.
,
Anand
,
S.
,
Reza-Garduno
,
E.
,
Cohen
,
R. E.
,
McKinley
,
G. H.
, and
Varanasi
,
K. K.
,
2013
, “
Droplet Mobility on Lubricant-Impregnated Surfaces
,”
Soft Matter
,
9
(
6
), pp.
1772
1780
.
33.
Bhushan
,
B.
, and
Nosonovsky
,
M.
,
2010
, “
The Rose Petal Effect and the Modes of Superhydrophobicity
,”
Philos. Trans. R. Soc. London A: Math., Phys. Eng. Sci.
,
368
(
1929
), pp.
4713
4728
.
34.
Bhushan
,
B.
, and
Jung
,
Y. C.
,
2008
, “
Wetting, Adhesion and Friction of Superhydrophobic and Hydrophilic Leaves and Fabricated Micro/Nanopatterned Surfaces
,”
J. Phys.: Condens. Matter
,
20
(
22
), p.
225010
.
35.
Pilat
,
D.
,
Papadopoulos
,
P.
,
Schaffel
,
D.
,
Vollmer
,
D.
,
Berger
,
R.
, and
Butt
,
H.-J.
,
2012
, “
Dynamic Measurement of the Force Required to Move a Liquid Drop on a Solid Surface
,”
Langmuir
,
28
(
49
), pp.
16812
16820
.
36.
Ayyad
,
A. H.
,
2010
, “
Thermodynamic Derivation of the Young–Dupré Form Equations for the Case of Two Immiscible Liquid Drops Resting on a Solid Substrate
,”
J. Colloid Interface Sci.
,
346
(
2
), pp.
483
485
.
37.
Smythe
,
W. R.
,
1968
,
Static and Dynamic Electricity
,
3rd ed.
,
McGraw-Hill
,
New York
.
38.
Yovanovich
,
M.
, and
Marotta
,
E.
,
2003
, “
Thermal Spreading and Contact Resistances
,”
Handbook of Heat Transfer
,
A.
Bejan
, and
A. D.
Kraus
, eds.,
Wiley
,
Hoboken, NJ
, pp.
261
394
.
39.
Lam
,
L. S.
,
Hodes
,
M.
, and
Enright
,
R.
,
2015
, “
Analysis of Galinstan-Based Microgap Cooling Enhancement Using Structured Surfaces
,”
ASME J. Heat Transfer
,
137
(
9
), p.
091003
.
40.
Lam
,
L. S.
,
Hodes
,
M.
,
Karamanis
,
G.
,
Kirk
,
T.
, and
MacLachlan
,
S.
,
2016
, “
Effect of Meniscus Curvature on Apparent Thermal Slip
,”
ASME J. Heat Transfer
,
138
(
12
), p.
122004
.
You do not currently have access to this content.