The heat fluxes across the turbine tip gap are characterized by large unsteady pressure gradients and shear from the viscous effects. The classical Newton heat convection equation, based on the turbine inlet total temperature, is inadequate. Previous research from our team relied on the use of the adiabatic wall temperature. In this paper, we propose an alternative approach to predict the convective heat transfer problem across the turbine rotor tip using discrete Green's functions (DGF). The linearity of the energy equation in the solid domain with constant thermal properties can be applied with a superposition technique to measure the data extracted from flow simulations to determine the Green's function distribution. The DGF is a matrix of coefficients that relate the temperature spatial (GF) distribution with the heat flux. This methodology is first applied to a backward facing step, validated using experimental data. The final aim of this paper is to demonstrate the method in the rotor turbine tip. A turbine stage at engine-like conditions was assessed using cfd software. The heat flux pulses were applied at different locations in the rotor tip geometry, and the increment of temperature in this zone was evaluated for different clearances, with a consequent variation of the DGF coefficients. Ultimately, a detailed uncertainty analysis of the methodology was included based on the magnitude of the heat flux pulses used in the DGF coefficients calculation and the uncertainty in the experimental measurements of the wall temperature.

References

References
1.
Pinilla
,
V.
,
Solano
,
J. P.
,
Paniagua
,
G.
, and
Anthony
,
R. J.
,
2012
, “
Adiabatic Wall Temperature Evaluation in a High Speed Turbine
,”
ASME J. Heat Transfer
,
134
(
9
), p.
091601
.
2.
Solano
,
J. P.
, and
Paniagua
,
G.
,
2009
, “
Novel Two-Dimensional Transient Heat Conduction Calculation in a Cooled Rotor: Ventilation Preheating—Blow-Down Flux
,”
ASME J. Heat Transfer
,
131
(
8
), p.
081601
.
3.
Thorpe
,
S. J.
,
Yoshino
,
S.
,
Thomas
,
G. A.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
,
2005
, “
Blade-Tip Heat Transfer in a Transonic Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
219
(
6
), pp.
421
430
.
4.
Moffat
,
R. J.
,
1998
, “
What's New in Convective Heat Transfer?
,”
Int. J. Heat Fluid Flow
,
19
(
2
), pp.
90
101
.
5.
Anderson
,
A. M.
, and
Moffat
,
R. J.
,
1992
, “
The Adiabatic Heat Transfer Coefficient and the Superposition Kernel Function—Part 1: Data for Arrays of Flatpacks for Different Flow Conditions
,”
ASME J. Electron. Packag.
,
114
(
1
), pp.
14
21
.
6.
Thorpe
,
S. J.
,
Miller
,
R. J.
,
Yoshino
,
S.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
,
2007
, “
The Effect of Work Processes on the Casing Heat Transfer of a Transonic Turbine
,”
ASME J. Turbomach.
,
129
(
1
), pp.
84
91
.
7.
Sellars
,
J. R.
,
Tribus
,
M.
, and
Klein
,
J. S.
,
1956
, “
Heat Transfer to Laminar Flow in a Round Tube or Flat Conduit—the Graetz Problem Extended
,”
Trans. ASME
,
78
, pp.
441
448
.
8.
Hacker
,
J. M.
, and
Eaton
,
J. K.
,
1997
, “
Measurements of Heat Transfer in a Separated and Reattaching Flow With Spatially Varying Thermal Boundary Conditions
,”
Int. J. Heat Fluid Flow
,
18
(
1
), pp.
131
141
.
9.
Vick
,
B.
,
Beale
,
J. H.
, and
Frankel
,
J. I.
,
1987
, “
Integral Equation Solution for Internal Flow Subjected to a Variable Heat Transfer Coefficient
,”
ASME J. Heat Transfer
,
109
(
4
), pp.
856
860
.
10.
Booten
,
C.
, and
Eaton
,
J.
,
2005
, “
Discrete Green's Function Measurements in Internal Flows
,”
ASME J. Heat Transfer
,
127
(
7
), pp.
692
698
.
11.
Booten
,
C.
, and
Eaton
,
J.
,
2007
, “
Discrete Green's Function Measurements in a Serpentine Cooling Passage
,”
ASME J. Heat Transfer
,
129
(
12
), pp.
1686
1696
.
12.
Mukerji
,
D.
, and
Eaton
,
J. K.
,
2005
, “
Discrete Green's Function Measurements in a Single Passage Turbine Model
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
366
377
.
13.
Zhang
,
Q.
,
O'Dowd
,
D. O.
,
He
,
L.
,
Wheeler
,
A. P. S.
,
Ligrani
,
P. M.
, and
Cheong
,
B. C. Y.
,
2011
, “
Overtip Shock Wave Structure and Its Impact on Turbine Blade Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041001
.
14.
Zhou
,
C.
,
2014
, “
Aerothermal Performance of Different Tips in Transonic Turbine Cascade With End-Wall Motion
,”
J. Propul. Power
,
30
(
5
), pp.
1316
1327
.
15.
Krishnababu
,
S. K.
,
Newton
,
P. J.
,
Dawes
,
W. N.
,
Lock
,
G. D.
,
Hodson
,
H. P.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2009
, “
Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines—Part I: Effect of Tip Geometry and Tip Clearance Gap
,”
ASME J. Turbomach.
,
131
(
1
), p.
011006
.
16.
De Maesschalck
,
C.
,
Lavagnoli
,
S.
,
Paniagua
,
G.
, and
Vinha
,
N.
,
2014
, “
Aerothermodynamics of Tight Rotor Tip Clearance Flows in High-Speed Unshrouded Turbines
,”
Appl. Therm. Eng.
,
65
(
1–2
), pp.
343
351
.
17.
Lavagnoli
,
S.
,
Paniagua
,
G.
,
De Maesschalck
,
C.
, and
Yasa
,
T.
,
2013
, “
Analysis of the Unsteady Overtip Casing Heat Transfer in a High Speed Turbine
,”
ASME J. Turbomach.
,
135
(
3
), p.
031027
.
18.
Polanka
,
M. D.
,
Hoying
,
D. A.
,
Meininger
,
M.
, and
MacArthur
,
C. D.
,
2003
, “
Turbine Tip and Shroud Heat Transfer and Loading—Part A: Parameter Effects Including Reynolds Number, Pressure Ratio, and Gas-to-Metal Temperature Ratio
,”
ASME J. Turbomach.
,
125
(
1
), pp.
97
106
.
19.
Shyam
,
V.
,
Ameri
,
A.
, and
Chen
,
J. P.
,
2012
, “
Analysis of Unsteady Tip and Endwall Heat Transfer in a Highly Loaded Transonic Turbine Stage
,”
ASME J. Turbomach.
,
134
(
4
), p.
041022
.
20.
Zhong
,
F.
,
Zhou
,
C.
,
Ma
,
H.
, and
Zhang
,
Q.
,
2017
, “
Heat Transfer of Winglet Tips in a Transonic Turbine Cascade
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
012605
.
21.
Paniagua
,
G.
,
Cuadrado
,
D.
,
Saavedra
,
J.
,
Andreoli
,
V.
,
Meyer
,
T.
,
Meyer
,
S.
, and
Lawrence
,
D.
,
2016
, “Design of the Purdue Experimental Turbine Aerothermal Laboratory for Optical and Surface Aero-Thermal Measurements,”
ASME
Paper No. GT2016-58101.
22.
Sieverding
,
C. H.
,
Arts
,
T.
,
Denos
,
R.
, and
Martelli
,
F.
,
1996
, “
Investigation of the Flow Field Downstream of a Turbine Trailing Edge Cooled Nozzle Guide Vane
,”
ASME J. Turbomach.
,
118
(
2
), pp.
291
300
.
23.
Batchelder
,
K. A.
, and
Eaton
,
J. K.
,
2000
, “
Practical Experience With the Discrete Green's Function Approach to Convective Heat Transfer
,”
ASME J. Heat Transfer
,
123
(
1
), pp.
70
76
.
24.
Celik
,
I. B.
,
Ghia
,
U.
, and
Roache
,
P. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
25.
Didier
,
F.
,
Dénos
,
R.
, and
Arts
,
T.
,
2002
, “
Unsteady Rotor Heat Transfer in a Transonic Turbine Stage
,”
ASME J. Turbomach.
,
124
(
4
), pp.
614
622
.
26.
De Maesschalck
,
C.
,
Lavagnoli
,
S.
,
Paniagua
,
G.
,
Verstraete
,
T.
,
Olive
,
R.
, and
Picot
,
P.
,
2016
, “
Heterogeneous Optimization Strategies for Carved and Squealer-like Turbine Blade Tips
,”
ASME J. Turbomach.
,
138
(
12
), p.
121011
.
27.
Paniagua
,
G.
,
Denos
,
R.
, and
Almeida
,
S.
,
2004
, “
Effect of the Hub Endwall Cavity Flow on the Flow-Field of a Transonic High-Pressure Turbine
,”
ASME J. Turbomach.
,
126
(
4
), pp.
578
586
.
28.
Lavagnoli
,
S.
,
De Maesschalck
,
C.
, and
Paniagua
,
G.
,
2015
, “
Analysis of the Heat Transfer Driving Parameters in Tight Rotor Blade Tip Clearances
,”
ASME J. Heat Transfer
,
138
(
1
), p.
011705
.
29.
Lavagnoli
,
S.
,
De Maesschalck
,
C.
, and
Paniagua
,
G.
,
2015
, “
Uncertainty Analysis of Adiabatic Wall Temperature Measurements in Turbine Experiments
,”
Appl. Therm. Eng.
,
82
, pp.
170
181
.
You do not currently have access to this content.