The detailed flow field and heat transfer were experimentally investigated in a channel with a circular cross section and equipped with a helical rib of low blockage ratio. Stereoscopic particle image velocimetry (S-PIV) was applied in order to measure the three components of the mean and turbulent velocities in the symmetry plane of the channel. Additionally, steady-state liquid crystal thermography (LCT) and infrared thermography were employed in order to study the convective heat transfer coefficient on the wall. Measurements were carried out more than six pitches downstream of the rib origin, presenting periodic velocity and heat transfer fields from this location on. The resulting velocity and heat transfer fields show similarities with those present in channels of plane walls, such as low momentum and heat transfer areas upstream and downstream of the obstacle, and high kinetic energy and heat transfer a few rib heights downstream of the obstacle. On the other hand, the shape of the rib induces a swirling motion with the same sense as the rib. The azimuthal mean velocity is negligible in the core of the pipe, but it increases considerably close to the wall.

References

References
1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
2nd ed.
,
CRC Press
, Boca Raton, FL
2.
Ligrani
,
P.
,
2013
, “
Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines
,”
Int. J. Rotating Mach.
,
2013
, p.
275653
.
3.
Zhu
,
M.
,
2015
, “Simulation aux grandes echelles du craquage thermique dans l'industrie petrochimique,” Ph.D. thesis, Université de Toulouse, Toulouse, France.
4.
Ravigururajan
,
T. S.
, and
Bergles
,
A. E.
,
1996
, “
Development and Verification of General Correlations for Pressure Drop and Heat Transfer in Single-Phase Turbulent Flow in Enhanced Tubes
,”
Exp. Therm. Fluid Sci.
,
13
(1), pp. 55–70.
5.
Pethkool
,
S.
,
Eiamsa-ard
,
S.
,
Kwankaomeng
,
S.
, and
Promvonge
,
P.
,
2011
, “
Turbulent Heat Transfer Enhancement in a Heat Exchanger Using Helically Corrugated Tube
,”
Int. Commun. Heat Mass Transfer
,
38
(
3
), pp.
340
347
.
6.
García
,
A.
,
Solano
,
J. P.
,
Vicente
,
P. G.
, and
Viedma
,
A.
,
2007
, “
Flow Pattern Assessment in Tubes With Wire Coil Inserts in Laminar and Transition Regimes
,”
Int. J. Heat Fluid Flow
,
28
(
3
), pp.
516
525
.
7.
Bonanni
,
L.
,
Da Soghe
,
R.
,
Facchini
,
B.
,
Micio
,
M.
,
Pievaroli
,
M.
,
Tarchi
,
L.
,
Abba
,
L.
, and
Maritano
,
M.
,
2013
, “
Heat Transfer and Friction in Circular Ducts With Shaped Ribs
,”
Tenth European Turbomachinery Conference
, Lappeenranta, Finland, Apr. 15–19, ETC Paper No.
129
.
8.
Kiml
,
R.
,
Magda
,
A.
,
Mochizuki
,
S.
, and
Murata
,
A.
,
2004
, “
Rib-Induced Secondary Flow Effects on Local Circumferential Heat Transfer Distribution Inside a Circular Rib-Roughened Tube
,”
Int. J. Heat Mass Transfer
,
47
(
6–7
), pp.
1403
1412
.
9.
Coletti
,
F.
,
Maurer
,
T.
,
Arts
,
T.
, and
Di Sante
,
A.
,
2012
, “
Flow Field Investigation in Rotating Rib-Roughened Channel by Means of Particle Image Velocimetry
,”
Exp. Fluids
,
52
(
4
), pp.
1043
1061
.
10.
Prasad
,
A. K.
,
2000
, “
Stereoscopic Particle Image Velocimetry
,”
Exp. Fluids
,
29
(
2
), pp.
103
116
.
11.
van Doorne
,
C. W. H.
, and
Westerweel
,
J.
,
2007
, “
Measurement of Laminar, Transitional and Turbulent Pipe Flow Using Stereoscopic-PIV
,”
Exp. Fluids
,
42
(
2
), pp.
259
279
.
12.
ISO
,
2003
, “Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular Cross-Section Conduits Running Full,” International Organization for Standardization, Geneva, Switzerland, Standard No.
ISO 5167
.
13.
Wieneke
,
B.
, and
Taylor
,
S.
,
2006
, “
Fat-Sheet PIV With Computation of Full 3D-Strain Tensor Using Tomographic Reconstruction
,”
13th International Symposium on Applications of Laser Techniques to Fluid Mechanics
, Lisbon, Portugal, June 26–29, Paper No. 1064.
14.
Lawson
,
N. J.
, and
Wu
,
J.
,
1997
, “
Three-Dimensional Particle Image Velocimetry: Experimental Error Analysis of a Digital Angular Stereoscopic System
,”
Meas. Sci. Technol.
,
8
(
12
), pp.
1455
1464
.
15.
Soloff
,
S. M.
,
Adrian
,
R. J.
, and
Liu
,
Z. C.
, 1997, “
Distortion Compensation for Generalised Stereoscopic Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
8
(12), pp.
1441
1454
.
16.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
6th ed.
,
Wiley
, Hoboken, NJ.
17.
Abdullah
,
N.
,
Talib
,
A. R. A.
,
Jaafar
,
A. A.
, and
Salleh
,
M. A. M.
,
2010
, “
The Basics and Issues of Thermochromic Liquid Crystal Calibration
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1089
1121
.
18.
Çakan
,
M.
,
2000
, “Aero-Thermal Investigation of Fixed Rib-Roughened Internal Cooling Passages,” Ph.D. thesis, von Karman Institute for Fluid Dynamics/Université Catholique de Lovain, Rhode-Saint-Genèse, Belgium/Louvain, Belgium.
19.
Cukurel
,
B.
,
Selkan
,
C.
, and
Arts
,
T.
,
2012
, “
Color Theory Perception of Steady Wide Band Liquid Crystal Thermometry
,”
Exp. Therm. Fluid Sci.
,
39
, pp.
112
122
.
20.
Carlomagno
,
G. M.
, and
Cardone
,
G.
,
2010
, “
Infrared Thermography for Convective Heat Transfer Measurements
,”
Exp. Fluids
,
49
(
6
), pp.
1187
1218
.
21.
ASME
,
2005
, “Test Uncertainty,” American Society of Mechanical Engineers, New York, Standard No.
ASME PTC19.1
.
22.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in the Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
, pp.
359
368
.
23.
Petukhov
,
B. S.
,
1970
,
Advances in Heat Transfer
, Vol.
6
,
T.
F.
Irvine
and
J. P.
Hartnett
, eds.,
Academic Press
,
New York
.
You do not currently have access to this content.