A high-speed (2 kHz) near-infrared (1.0–1.65 μm) multispectral pyrometer was used for noninvasive measurements of the subpixel temperature distribution near the sharp leading edge of a wing exposed to a supersonic plasma jet. The multispectral pyrometer operating in the field measurement mode was able to measure the spatial temperature distribution. Multiple spectra were used to determine the temperature distributions in the measurement region. The spatial resolution of the multispectral pyrometer was not restricted to one “pixel” but was extended to subpixel accuracy (the temperature distribution inside one pixel in the image space corresponding to the point region in the object space). Thus, this system gives high-speed, multichannel, and long working time spatial temperature measurements with a small data stream from high-speed multispectral pyrometers. The temperature distribution of the leading edge of a ceramic wing was investigated with the leading edge exposed to extreme convective heating from a high-enthalpy plasma flow. Simultaneous measurements with a multispectral pyrometer and an imaging pyrometer verify the measurement accuracy of the subpixel temperature distribution. Thus, this multispectral pyrometry can provide in situ noninvasive temperature diagnostics in supersonic plasma jet environments.

References

1.
Monteverde
,
F.
, and
Savino
,
R.
,
2007
, “
Stability of Ultra-High-Temperature ZrB2–SiC Ceramics Under Simulated Atmospheric Re-Entry Conditions
,”
J. Eur. Ceram. Soc.
,
27
(16), pp.
4797
4805
.
2.
Marschall
,
J.
, and
Fletcher
,
D. G.
,
2010
, “
High-Enthalpy Test Environments, Flow Modeling and In Situ Diagnostics for Characterizing Ultra-High Temperature Ceramics
,”
J. Eur. Ceram. Soc.
,
30
(11), pp.
2323
2336
.
3.
Squire
,
T. H.
, and
Marschall
,
J.
,
2010
, “
Material Property Requirements for Analysis and Design of UHTC Components in Hypersonic Applications
,”
J. Eur. Ceram. Soc.
,
30
(11), pp.
2239
2251
.
4.
Monteverde
,
F.
,
Savino
,
R.
,
Fumo
,
M.
, and
Maso
,
A.
,
2010
, “
Plasma Wind Tunnel Testing of Ultra-High Temperature ZrB2–SiC Composites Under Hypersonic Re-Entry Conditions
,”
J. Eur. Ceram. Soc.
,
30
(11), pp.
2313
2321
.
5.
Cardone
,
G.
,
2007
, “
IR Heat Transfer Measurements in Hypersonic Plasma Flows
,”
Quant. InfraRed Thermography J.
,
4
(
2
), pp.
233
251
.
6.
Ranc
,
N.
,
Pina
,
V.
,
Sutter
,
G.
, and
Philippon
,
S.
,
2004
, “
Temperature Measurement by Visible Pyrometry: Orthogonal Cutting Application
,”
ASME J. Heat Transfer
,
126
(6), pp.
931
936
.
7.
Bendada
,
A.
, and
Lamontagne
,
M.
,
2004
, “
A New Infrared Pyrometer for Polymer Temperature Measurement During Extrusion Moulding
,”
Infrared Phys. Technol.
,
46
(1–2), pp.
11
15
.
8.
Simmons
,
D. F.
,
Fortgang
,
C. M.
, and
Holtkamp
,
D. B.
,
2005
, “
Using Multispectral Imaging to Measure Temperature Profiles and Emissivity of Large Thermionic Dispenser Cathodes
,”
Rev. Sci. Instrum.
,
76
(4), p.
044901
.
9.
Mori
,
M.
,
Novak
,
L.
, and
Sekavčnik
,
M.
,
2007
, “
Measurements on Rotating Blades Using IR Thermography
,”
Exp. Therm. Fluid Sci.
,
32
(
2
), pp.
387
396
.
10.
Fu
,
T. R.
,
Zhao
,
H.
,
Zeng
,
J.
,
Zhong
,
M. H.
, and
Shi
,
C. L.
,
2010
, “
Two-Color Optical CCD-Based Pyrometer Using a Two-Peak Filter
,”
Rev. Sci. Instrum.
,
81
(12), p.
124903
.
11.
Fu
,
T. R.
,
Zhao
,
H.
,
Zeng
,
J.
,
Wang
,
Z.
,
Zhong
,
M. H.
, and
Shi
,
C. L.
,
2010
, “
Improvements of Three-Color Optical CCD-Based Pyrometer System
,”
Appl. Opt.
,
49
(
31
), pp.
5997
6005
.
12.
Bai
,
H.
,
Xie
,
Z.
,
Zhang
,
Y.
, and
Hu
,
Z.
,
2013
, “
Evaluation and Improvement in the Accuracy of a Charge-Coupled-Device-Based Pyrometer for Temperature Field Measurements of Continuous Casting Billets
,”
Rev. Sci. Instrum.
,
84
(
6
), p.
064904
.
13.
Fu
,
T. R.
,
Liu
,
J. F.
, and
Tian
,
J. B.
,
2017
, “
VIS-NIR Multispectral Synchronous Imaging Pyrometer for High-Temperature Measurements
,”
Rev. Sci. Instrum.
,
88
(
6
), p.
064902
.
14.
Vattulainen
,
J.
,
Nummela
,
V.
,
Hernberg
,
R.
, and
Kytola
,
J.
,
2000
, “
A System for Quantitative Imaging Diagnostics and Its Application to Pyrometric In-Cylinder Flame-Temperature Measurements in Large Diesel Engines
,”
Meas. Sci. Technol.
,
11
(2), pp.
103
119
.
15.
Cignoli
,
F.
,
De Iuliis
,
S.
,
Manta
,
V.
, and
Zizak
,
G.
,
2001
, “
Two-Dimensional Two-Wavelength Emission Technique for Soot Diagnostics
,”
Appl. Opt.
,
40
(
30
), pp.
5370
5378
.
16.
Payri
,
F.
,
Pastor
,
J. V.
,
García
,
J. M.
, and
Pastor
,
J. M.
,
2007
, “
Contribution to the Application of Two-Colour Imaging to Diesel Combustion
,”
Meas. Sci. Technol.
,
18
(8), pp.
2579
2598
.
17.
Densmore
,
J. M.
,
Biss
,
M. M.
,
McNesby
,
K. L.
, and
Homan
,
B. E.
,
2011
, “
High-Speed Digital Color Imaging Pyrometry
,”
Appl. Opt.
,
50
(
17
), pp.
2659
2665
.
18.
Yan
,
W.
,
Zhou
,
H.
,
Jiang
,
Z.
,
Lou
,
C.
,
Zhang
,
X.
, and
Chen
,
D.
,
2013
, “
Experiments on Measurement of Temperature and Emissivity of Municipal Solid Waste (MSW) Combustion by Spectral Analysis and Image Processing in Visible Spectrum
,”
Energy Fuels
,
27
(
11
), pp.
6754
6762
.
19.
Guo
,
H. Q.
,
Castillo
,
J.
, and
Sunderland
,
P.
,
2013
, “
Digital Camera Measurements of Soot Temperature and Soot Volume Fraction in Axisymmetric Flames
,”
Appl. Opt.
,
52
(
33
), pp.
8040
8047
.
20.
Kappagantula
,
K.
,
Crane
,
C.
, and
Pantoya
,
M.
,
2013
, “
Determination of the Spatial Temperature Distribution From Combustion Products: A Diagnostic Study
,”
Rev. Sci. Instrum.
,
84
(
10
), p.
104902
.
21.
Tapetado
,
A.
,
Álvarez
,
J.
,
Miguélez
,
H.
, and
Vázquez
,
C.
,
2016
, “
Two-Color Pyrometer for Process Temperature Measurement During Machining, IEEE
,”
J. Lightwave Technol.
,
34
(
4
), pp.
1380
1386
.
22.
Tapetado
,
A.
,
Álvarez
,
J.
,
Miguélez
,
H.
, and
Vázquez
,
C.
,
2017
, “
Fiber-Optic Pyrometer for Very Localized Temperature Measurements in a Turning Process
,”
IEEE J. Sel. Top. Quantum Electron.
,
23
(
2
), p.
5601306
.
23.
Ng
,
D.
, and
Fralick
,
G.
,
2001
, “
Use of a Multiwavelength Pyrometer in Several Elevated Temperature Aerospace Applications
,”
Rev. Sci. Instrum.
,
72
(
2
), pp.
1522
2530
.
24.
Mazikowski
,
A.
, and
Chrzanowski
,
K.
,
2003
, “
Non-Contact Multiband Method for Emissivity Measurement
,”
Infrared Phys. Technol.
,
44
(2), pp.
91
99
.
25.
Wen
,
C. D.
, and
Mudawar
,
I.
,
2005
, “
Emissivity Characteristics of Polished Aluminum Alloy Surfaces and Assessment of Multispectral Radiation Thermometry (MRT) Emissivity Models
,”
Int. J. Heat Mass Transfer
,
48
(7), pp.
1316
1329
.
26.
Sade
,
S.
, and
Katzir
,
A.
,
2004
, “
Spectral Emissivity and Temperature Measurements of Selective Bodies Using Multiband Fiber-Optic Radiometry
,”
J. Appl. Phys.
,
96
(
6
), pp.
3507
3513
.
27.
Madura
,
H.
,
Piatkowski
,
T.
, and
Powiada
,
E.
,
2004
, “
Multispectral Precise Pyrometer for Measurement of Seawater Surface Temperature
,”
Infrared Phys. Technol.
,
46
(1–2), pp.
69
73
.
28.
Xiao
,
P.
,
Dai
,
J. M.
, and
Wang
,
Q. W.
,
2008
, “
Development of Multi-Target Multi-Spectral High-Speed Pyrometer
,”
Spectrosc. Spectral Anal.
,
28
(
11
), pp.
2730
2734
.
29.
Duvaut
,
T.
,
2008
, “
Comparison Between Multiwavelength Infrared and Visible Pyrometry: Application to Metals
,”
Infrared Phys. Technol.
,
51
(4), pp.
292
299
.
30.
Estevadeordal
,
J.
,
Wang
,
G. H.
,
Nirmalan
,
N.
,
Wang
,
A. Q.
,
Harper
,
S. P.
, and
Rigney
,
J. D.
,
2013
, “
Multicolor Techniques for Identification and Filtering of Burst Signals in Jet Engine Pyrometers
,”
ASME J. Turbomach.
,
136
(
3
), p.
031004
.
31.
Fu
,
T. R.
,
Wang
,
Z.
, and
Cheng
,
X. F.
,
2010
, “
Temperature Measurements of Diesel Fuel Combustion With Multicolor Pyrometry
,”
ASME J. Heat Transfer
,
132
(
5
), p.
051602
.
32.
Fu
,
T. R.
,
Tan
,
P.
,
Pang
,
C. H.
,
Zhao
,
H.
, and
Shen
,
Y.
,
2011
, “
Fast Fiber-Optic Multi-Wavelength Pyrometer
,”
Rev. Sci. Instrum.
,
82
(6), p.
064902
.
33.
Fu
,
T. R.
,
Liu
,
J. F.
,
Duan
,
M. H.
, and
Zong
,
A. Z.
,
2014
, “
Temperature Measurements Using Multicolor Pyrometry in Thermal Radiation Heating Environments
,”
Rev. Sci. Instrum.
,
85
(
4
), p.
044901
.
34.
Fu
,
T. R.
,
Liu
,
J. F.
,
Tang
,
J. Q.
,
Duan
,
M. H.
,
Zhao
,
H.
, and
Shi
,
C. L.
,
2014
, “
Temperature Measurements of High-Temperature Semi-Transparent Infrared Material Using Multi-Wavelength Pyrometry
,”
Infrared Phys. Technol.
,
66
, pp.
49
55
.
35.
Fu
,
T. R.
,
Duan
,
M. H.
,
Tian
,
J. B.
, and
Shi
,
C. L.
,
2016
, “
Inverse Analysis of Non-Uniform Temperature Distributions Using Multispectral Pyrometry
,”
Infrared Phys. Technol.
,
76
, pp.
504
509
.
36.
Araújo
,
A.
,
2016
, “
Analysis of Multi-Band Pyrometry for Emissivity and Temperature Measurements of Gray Surfaces at Ambient Temperature
,”
Infrared Phys. Technol.
,
76
, pp.
365
374
.
37.
Daniel
,
K.
,
Feng
,
C.
, and
Gao
,
S.
,
2016
, “
Application of Multispectral Radiation Thermometry in Temperature Measurement of Thermal Barrier Coated Surfaces
,”
Measurements
,
92
, pp.
218
223
.
38.
Burachik
,
R. S.
, and
Kaya
,
C. Y.
,
2012
, “
An Augmented Penalty Function Method With Penalty Parameter Updates for Nonconvex Optimization
,”
Nonlinear Anal.
,
75
(3), pp.
1158
1167
.
You do not currently have access to this content.