We present a mathematical model for dropwise condensation (DWC) heat transfer on a surface with wettability gradient. We adapt well-established population balance model for DWC on inclined surfaces to model DWC on a surface with wettability gradient. In particular, our model takes into account the effect of wettability gradient and energy released during drop coalescence to determine the drop departure size. We validate our model with published experimental data of DWC heat flux and drop size distribution. Based on various experimental studies on drop motion, we also propose a mechanism that explains how the energy released during drop coalescence on a surface with wettability gradient and in a condensation environment aids drop motion. The mechanism correctly explains the shift of center of mass of two coalescing drops on a surface with wettability gradient toward the drop on high wetting region. Using the model, we analyze the effect of wettability gradient on the DWC heat flux. Our model predictions show that the optimal choice of wettability gradient is governed by differential variations in population density and heat transfer through a drop with change in wettability of the surface. We also demonstrate that contact angle at which there is maximum heat transfer through a drop varies with thickness of coating layer leading to change in optimal wettability gradient.

References

1.
Schmidt
,
E.
,
Schurig
,
W.
, and
Sellschopp
,
W.
,
1930
, “
Versuche Über Die Kondensation Von Wasserdampf in Film-Und Tropfenform
,”
Tech. Mech. Thermodyn.
,
1
(
2
), pp.
53
63
.
2.
Le Fevre
,
E.
, and
Rose
,
J.
,
1965
, “
An Experimental Study of Heat Transfer by Dropwise Condensation
,”
Int. J. Heat Mass Transfer
,
8
(
8
), pp.
1117
1133
.
3.
Graham
,
C.
, and
Griffith
,
P.
,
1973
, “
Drop Size Distributions and Heat Transfer in Dropwise Condensation
,”
Int. J. Heat Mass Transfer
,
16
(
2
), pp.
337
346
.
4.
Rose
,
J.
,
2002
, “
Dropwise Condensation Theory and Experiment: A Review
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
216
(
2
), pp.
115
128
.
5.
Tanasawa
,
I.
, and
Utaka
,
Y.
,
1983
, “
Measurement of Condensation Curves for Dropwise Condensation of Steam at Atmospheric Pressure
,”
ASME J. Heat Transfer
,
105
(
3
), pp.
633
638
.
6.
Stylianou
,
S.
, and
Rose
,
J.
,
1983
, “
Drop-to-Filmwise Condensation Transition: Heat Transfer Measurements for Ethanediol
,”
Int. J. Heat Mass Transfer
,
26
(
5
), pp.
747
760
.
7.
Patankar
,
N. A.
,
2010
, “
Supernucleating Surfaces for Nucleate Boiling and Dropwise Condensation Heat Transfer
,”
Soft Matter
,
6
(
8
), pp.
1613
1620
.
8.
Kim
,
S.
, and
Kim
,
K. J.
,
2011
, “
Dropwise Condensation Modeling Suitable for Superhydrophobic Surfaces
,”
ASME J. Heat Transfer
,
133
(
8
), p.
081502
.
9.
Greenspan
,
H. P.
,
1978
, “
On the Motion of a Small Viscous Droplet That Wets a Surface
,”
J. Fluid Mech.
,
84
(
1
), pp.
125
143
.
10.
Daniel
,
S.
,
Chaudhury
,
M. K.
, and
Chen
,
J. C.
,
2001
, “
Fast Drop Movements Resulting From the Phase Change on a Gradient Surface
,”
Science
,
291
(
5504
), pp.
633
636
.
11.
Macner
,
A. M.
,
Daniel
,
S.
, and
Steen
,
P. H.
,
2014
, “
Condensation on Surface Energy Gradient Shifts Drop Size Distribution Toward Small Drops
,”
Langmuir
,
30
(
7
), pp.
1788
1798
.
12.
Ashley
,
K. M.
,
Meredith
,
J. C.
,
Amis
,
E.
,
Raghavan
,
D.
, and
Karim
,
A.
,
2003
, “
Combinatorial Investigation of Dewetting: Polystyrene Thin Films on Gradient Hydrophilic Surfaces
,”
Polymer
,
44
(
3
), pp.
769
772
.
13.
Choi
,
S.-H.
, and
Zhang Newby
,
B.-M.
,
2003
, “
Micrometer-Scaled Gradient Surfaces Generated Using Contact Printing of Octadecyltrichlorosilane
,”
Langmuir
,
19
(
18
), pp.
7427
7435
.
14.
Huang
,
Z.
,
Zhang
,
J.
,
Cheng
,
J.
,
Xu
,
S.
,
Pi
,
P.
,
Cai
,
Z.
,
Wen
,
X.
, and
Yang
,
Z.
,
2012
, “
Preparation and Characterization of Gradient Wettability Surface Depending on Controlling Cu (Oh) 2 Nanoribbon Arrays Growth on Copper Substrate
,”
Appl. Surf. Sci.
,
259
, pp.
142
146
.
15.
Sommers
,
A.
,
Brest
,
T.
, and
Eid
,
K.
,
2013
, “
Topography-Based Surface Tension Gradients to Facilitate Water Droplet Movement on Laser-Etched Copper Substrates
,”
Langmuir
,
29
(
38
), pp.
12043
12050
.
16.
Tanaka
,
H.
,
1975
, “
A Theoretical Study of Dropwise Condensation
,”
ASME J. Heat Transfer
,
97
(
1
), pp.
72
78
.
17.
Leach
,
R.
,
Stevens
,
F.
,
Langford
,
S.
, and
Dickinson
,
J.
,
2006
, “
Dropwise Condensation: Experiments and Simulations of Nucleation and Growth of Water Drops in a Cooling System
,”
Langmuir
,
22
(
21
), pp.
8864
8872
.
18.
Abu-Orabi
,
M.
,
1998
, “
Modeling of Heat Transfer in Dropwise Condensation
,”
Int. J. Heat Mass Transfer
,
41
(
1
), pp.
81
87
.
19.
Ranodolph
,
A.
,
2012
,
Theory of Particulate Processes 2e: Analysis and Techniques of Continuous Crystallization
,
Elsevier
, London.
20.
Zhao
,
H.
, and
Beysens
,
D.
,
1995
, “
From Droplet Growth to Film Growth on a Heterogeneous Surface: Condensation Associated With a Wettability Gradient
,”
Langmuir
,
11
(
2
), pp.
627
634
.
21.
Chaudhury
,
M. K.
,
Chakrabarti
,
A.
, and
Daniel
,
S.
,
2015
, “
Generation of Motion of Drops With Interfacial Contact
,”
Langmuir
,
31
(
34
), pp.
9266
9281
.
22.
Tanaka
,
H.
,
1975
, “
Measurements of Drop-Size Distributions During Transient Dropwise Condensation
,”
ASME J. Heat Transfer
,
97
(
3
), pp.
341
346
.
23.
Maa
,
J. R.
,
1978
, “
Drop Size Distribution and Heat Flux of Dropwise Condensation
,”
Chem. Eng. J.
,
16
(
3
), pp.
171
176
.
24.
Sikarwar
,
B. S.
,
Battoo
,
N. K.
,
Khandekar
,
S.
, and
Muralidhar
,
K.
,
2011
, “
Dropwise Condensation underneath Chemically Textured Surfaces: Simulation and Experiments
,”
ASME J. Heat Transfer
,
133
(
2
), p.
021501
.
25.
LeFevre
,
E.
, and
Rose
,
J.
,
1966
, “
A Theory of Heat Transfer by Dropwise Condensation
,”
Third International Heat Transfer Conference
, Chicago, IL, Aug. 7–12, pp.
362
375
.
26.
Daniel
,
S.
, and
Chaudhury
,
M. K.
,
2002
, “
Rectified Motion of Liquid Drops on Gradient Surfaces Induced by Vibration
,”
Langmuir
,
18
(
9
), pp.
3404
3407
.
27.
Brochard
,
F.
,
1989
, “
Motions of Droplets on Solid Surfaces Induced by Chemical or Thermal Gradients
,”
Langmuir
,
5
(
2
), pp.
432
438
.
28.
Ito
,
Y.
,
Heydari
,
M.
,
Hashimoto
,
A.
,
Konno
,
T.
,
Hirasawa
,
A.
,
Hori
,
S.
,
Kurita
,
K.
, and
Nakajima
,
A.
,
2007
, “
The Movement of a Water Droplet on a Gradient Surface Prepared by Photodegradation
,”
Langmuir
,
23
(
4
), pp.
1845
1850
.
29.
Lv
,
C.
,
Chen
,
C.
,
Chuang
,
Y.-C.
,
Tseng
,
F.-G.
,
Yin
,
Y.
,
Grey
,
F.
, and
Zheng
,
Q.
,
2014
, “
Substrate Curvature Gradient Drives Rapid Droplet Motion
,”
Phys. Rev. Lett.
,
113
(
2
), p.
026101
.
30.
Wang
,
Q.
,
Yao
,
X.
,
Liu
,
H.
,
Quéré
,
D.
, and
Jiang
,
L.
,
2015
, “
Self-Removal of Condensed Water on the Legs of Water Striders
,”
Proc. Natl. Acad. Sci. U.S.A.
,
112
(
30
), pp.
9247
9252
.
31.
Zheng
,
Y.
,
Bai
,
H.
,
Huang
,
Z.
,
Tian
,
X.
,
Nie
,
F.-Q.
,
Zhao
,
Y.
,
Zhai
,
J.
, and
Jiang
,
L.
,
2010
, “
Directional Water Collection on Wetted Spider Silk
,”
Nature
,
463
(
7281
), pp.
640
643
.
32.
Anand
,
S.
, and
Son
,
S. Y.
,
2010
, “
Sub-Micrometer Dropwise Condensation Under Superheated and Rarefied Vapor Condition
,”
Langmuir
,
26
(
22
), pp.
17100
17110
.
33.
Nam
,
Y.
,
Kim
,
H.
, and
Shin
,
S.
,
2013
, “
Energy and Hydrodynamic Analyses of Coalescence-Induced Jumping Droplets
,”
Appl. Phys. Lett.
,
103
(
16
), p.
161601
.
34.
Liu
,
F.
,
Ghigliotti
,
G.
,
Feng
,
J. J.
, and
Chen
,
C.-H.
,
2014
, “
Numerical Simulations of Self-Propelled Jumping upon Drop Coalescence on Non-Wetting Surfaces
,”
J. Fluid Mech.
,
752
, pp.
39
65
.
35.
Boreyko
,
J. B.
, and
Chen
,
C.-H.
,
2009
, “
Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces
,”
Phys. Rev. Lett.
,
103
(
18
), p.
184501
.
36.
Lai
,
Y.-H.
,
Hsu
,
M.-H.
, and
Yang
,
J.-T.
,
2010
, “
Enhanced Mixing of Droplets During Coalescence on a Surface With a Wettability Gradient
,”
Lab Chip
,
10
(
22
), pp.
3149
3156
.
37.
Brunet
,
P.
,
Eggers
,
J.
, and
Deegan
,
R.
,
2007
, “
Vibration-Induced Climbing of Drops
,”
Phys. Rev. Lett.
,
99
(
14
), p.
144501
.
38.
Noblin
,
X.
,
Kofman
,
R.
, and
Celestini
,
F.
,
2009
, “
Ratchetlike Motion of a Shaken Drop
,”
Phys. Rev. Lett.
,
102
(
19
), p.
194504
.
39.
De Gennes
,
P.-G.
,
Brochard-Wyart
,
F.
, and
Quéré
,
D.
,
2013
,
Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
,
Springer Science & Business Media
, New York.
40.
Chandra
,
S.
, and
Avedisian
,
C.
,
1991
, “
On the Collision of a Droplet With a Solid Surface
,”
Proc. R. Soc. A
,
432
(1884), pp.
13
41
.
41.
Wang
,
F.-C.
,
Yang
,
F.
, and
Zhao
,
Y.-P.
,
2011
, “
Size Effect on the Coalescence-Induced Self-Propelled Droplet
,”
Appl. Phys. Lett.
,
98
(
5
), p.
053112
.
42.
Lv
,
C.
,
Hao
,
P.
,
Yao
,
Z.
,
Song
,
Y.
,
Zhang
,
X.
, and
He
,
F.
,
2013
, “
Condensation and Jumping Relay of Droplets on Lotus Leaf
,”
Appl. Phys. Lett.
,
103
(
2
), p.
021601
.
43.
Aarts
,
D. G.
,
Lekkerkerker
,
H. N.
,
Guo
,
H.
,
Wegdam
,
G. H.
, and
Bonn
,
D.
,
2005
, “
Hydrodynamics of Droplet Coalescence
,”
Phys. Rev. Lett.
,
95
(
16
), p.
164503
.
44.
Thoroddsen
,
S.
, and
Takehara
,
K.
,
2000
, “
The Coalescence Cascade of a Drop
,”
Phys. Fluids
,
12
(
6
), pp.
1265
1267
.
45.
Yaws
,
C. L.
,
1995
,
Handbook of Thermal Conductivity, Volume 3: Organic Compounds C8 to C28
, Vol.
3
,
Gulf Professional Publishing
, Houston, TX.
46.
Lemmon
,
E.
,
McLinden
,
M.
, and
Friend
,
D.
,
2005
, “Thermophysical Properties of Fluid Systems,”
NIST Chemistry WebBook, SRD 69
, National Institute of Standards and Technology, Gaithersburg, MD.
47.
Vosough
,
A.
,
Falahat
,
A.
, and
Vosough
,
S.
,
2011
, “
Improvement Power Plant Efficiency With Condenser Pressure
,”
Int. J. Multidiscip. Sci. Eng.
,
2
(
3
), pp. 38–43.
48.
Sikarwar
,
A. S.
,
Dandotiya
,
D.
, and
Agrawal
,
S. K.
,
2013
, “
Performance Analysis of Surface Condenser Under Various Operating Parameters
,”
Int. J. Eng. Res. Appl.
,
3
(
4
), pp.
416
421
.
You do not currently have access to this content.