Previous research in dropwise condensation (DWC) on rough microtextured superhydrophobic surfaces has demonstrated evidence of high heat transfer enhancement compared to smooth hydrophobic surfaces. In this study, we experimentally investigate the use of microporous sintered copper powder on copper substrates coated with a thiol-based self-assembled monolayer to attain enhanced DWC for steam in a custom condensation chamber. Although microtextured superhydrophobic surfaces have shown advantageous droplet growth dynamics, precise heat transfer measurements are underdeveloped at high heat flux. Sintered copper powder diameters from 4 μm to 119 μm were used to investigate particle size effects on heat transfer. As powder diameter decreased, competing physical factors led to improved thermal performance. At consistent operating conditions, we experimentally demonstrated a 23% improvement in the local condensation heat transfer coefficient for a superhydrophobic 4 μm diameter microporous copper powder surface compared to a smooth hydrophobic copper surface. For the smallest powders observed, this improvement is primarily attributed to the reduction in contact angle hysteresis as evidenced by the decrease in departing droplet size. Interestingly, the contact angle hysteresis of sessile water droplets measured in air is in contradiction with the departing droplet size observations made during condensation of saturated steam. It is evident that the specific design of textured superhydrophobic surfaces has profound implications for enhanced condensation in high heat flux applications.

References

1.
Bonner
,
R. W.
, III
,
2010
, “
Dropwise Condensation in Vapor Chambers
,” 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (
SEMI-THERM
), Santa Clara, CA, Feb. 21–25.
2.
Schmidt
,
E.
,
Schurig
,
W.
, and
Sellschopp
,
W.
,
1930
, “
Versuche Uber Die Kondensation in Film- Und Tropfenform
,”
Tech. Mech. Thermodyn.
,
1
(2), pp.
55
63
.
3.
Bonner
,
R.
, III
,
2011
, “
Dropwise Condensation Life Testing of Self-Assembled Monolayers
,”
ASME
Paper No. IHTC14-22936.
4.
Rose
,
J.
,
2002
, “
Dropwise Condensation Theory and Experiment: A Review
,”
Proc. Inst. Mech. Eng. Part A
,
216
(2), pp.
115
128
.
5.
Bonner
,
R. W.
, III
,
2009
, “
Dropwise Condensation on Surfaces With Graded Hydrophobicity
,”
ASME
Paper No. HT2009-88516.
6.
Patankar
,
N. A.
,
2004
, “
Mimicking the Lotus Effect: Influence of Double Roughness Structures and Slender Pillars
,”
Langmuir
,
20
(19), pp.
8209
8213
.
7.
Patankar
,
N. A.
,
2010
, “
Supernucleating Surfaces for Nucleate Boiling and Dropwise Condensation Heat Transfer
,”
Soft Matter
,
6
(8), pp.
1613
1620
.
8.
Kim
,
S.
, and
Kim
,
K. J.
,
2011
, “
Dropwise Condensation Modeling Suitable for Superhydrophobic Surfaces
,”
ASME J. Heat Transfer
,
133
(8), p.
081502
.
9.
Mendoza
,
H.
,
Beaini
,
S.
, and
Carey
,
V. P.
,
2011
, “
An Exploration of Transport Within Micro and Nano Droplet Clusters During Dropwise Condensation of Water on Nanostructured Surfaces
,”
ASME
Paper No. IMECE2011-64151.
10.
Beaini
,
S. S.
,
Mendoza
,
H.
, and
Carey
,
V. P.
,
2012
, “
The Effect of Thermal Resistance for Dropwise Condensation on Hydrophobic Micro-Pillared Structures
,”
ASME
Paper No. IMECE2012-89574.
11.
Dietz
,
C.
,
Rykaczewski
,
K.
,
Fedorov
,
A. G.
, and
Joshi
,
Y.
,
2010
, “
Visualizations of Droplet Departure on a Superhydrophobic Surface and Implications to Heat Transfer Enhancement During Dropwise Condensation
,”
Appl. Phys. Lett.
,
97
, p.
033104
.
12.
Rykaczewski
,
K.
,
Osborn
,
W. A.
,
Chinn
,
J.
,
Walker
,
M. L.
,
Scott
,
J. H. J.
,
Jones
,
W.
,
Hao
,
C.
,
Yao
,
S.
, and
Wang
,
Z.
,
2012
, “
How Nanorough Is Rough Enough to Make a Surface Superhydrophobic During Water Condensation?
,”
Soft Matter
,
8
(33), p.
8786
.
13.
Rykaczewski
,
K.
,
Scott
,
J. H. J.
,
Rajauria
,
S.
,
Chinn
,
J.
,
Chinn
,
A. M.
, and
Jones
,
W.
,
2011
, “
Three Dimensional Aspects of Droplet Coalescence During Dropwise Conensation on Superhydrophobic Surfaces
,”
Soft Matter
,
7
(19), p.
8749
.
14.
Rykaczewski
,
K.
,
Paxson
,
A. T.
,
Anand
,
S.
,
Chen
,
X.
,
Wang
,
Z.
, and
Varanasi
,
K. K.
,
2013
, “
Multimode Multidrop Serial Coalescence Effects During Condensation on Hierarchical Superhydrophobic Surfaces
,”
Langmuir
,
29
(3), pp.
881
891
.
15.
Rykaczewski
,
K.
,
2012
, “
Microdroplet Growth Mechanism During Water Condensation on Superhydrophobic Surfaces
,”
Langmuir
,
28
(20), pp.
7720
7729
.
16.
He
,
B.
,
Patankar
,
N. A.
, and
Lee
,
J.
,
2003
, “
Multiple Equilibrium Droplet Shapes and Design Criterion for Rough Hydrophobic Surfaces
,”
Langmuir
,
19
(12), pp.
4999
5003
.
17.
Narhe
,
R. D.
, and
Beysens
,
D. A.
,
2007
, “
Growth Dynamics of Water Drops on a Square-Pattern Rough Hydrophobic Surface
,”
Langmuir
,
23
(12), pp.
6486
6489
.
18.
Narhe
,
R. D.
, and
Beysens
,
D. A.
,
2004
, “
Nucleation and Growth on a Superhydrophobic Grooved Surface
,”
Phys. Rev. Lett.
,
93
(
7
), p.
076103
.
19.
Chen
,
C.-H.
,
Cai
,
Q.
,
Tsai
,
C.
,
Chen
,
C.-L.
,
Xiong
,
G.
,
Yu
,
Y.
, and
Ren
,
Z.
,
2007
, “
Dropwise Condensation on Superhydrophobic Surfaces With Two-Tier Roughness
,”
Appl. Phys. Lett.
,
90
(17), p.
173108
.
20.
Zheng
,
Y.
,
Chen
,
C.-H.
,
Pearlman
,
H.
,
Flannery
,
M.
, and
Bonner
,
R.
,
2015
, “
Effect of Porous Coating on Condensation Heat Transfer
,”
Ninth International Conference on Boiling and Condensation Heat Transfer
, Boulder, CO, Apr. 26–30.
21.
Zheng
,
Y.
,
Chen
,
C.-H.
,
Pearlman
,
H.
, and
Bonner
,
R.
,
2016
, “
Enhanced Filmwise Condensation With Thin Porous Coating
,”
First Pacific Rim Thermal Engineering Conference (PRTEC)
, Big Island, HI, Paper No.
PRTEC-14728
22.
Faghri
,
A.
,
1995
,
Heat Pipe Science and Technology
,
Taylor & Francis
,
Washington, DC
.
23.
Hwang
,
G. S.
,
Kaviany
,
M.
,
Anderson
,
W. G.
, and
Zuo
,
J.
,
2007
, “
Modulated Wick Heat Pipe
,”
Int. J. Heat Mass Transfer
,
50
(7–8), pp.
1420
1434
.
24.
Hwang
,
G. S.
,
Fleming
,
E.
,
Carne
,
B.
,
Sharratt
,
S.
,
Nam
,
Y.
,
Dussinger
,
P.
,
Ju
,
Y. S.
, and
Kaviany
,
M.
,
2011
, “
Multi-Artery Heat-Pipe Spreader: Lateral Liquid Supply
,”
Int. J. Heat Mass Transfer
,
54
(11–12), pp.
2334
2340
.
25.
Hwang
,
G. S.
,
Nam
,
Y.
,
Fleming
,
E.
,
Dussinger
,
P.
,
Ju
,
Y. S.
, and
Kaviany
,
M.
,
2010
, “
Multi-Artery Heat Pipe Spreader: Experiment
,”
Int. J. Heat Mass Transfer
,
53
(13–14), pp.
2662
2669
.
26.
Anderson
,
D. M.
,
Gupta
,
M. K.
,
Voevodin
,
A. A.
,
Hunter
,
C. N.
,
Putnam
,
S. A.
,
Tsukruk
,
V. V.
, and
Fedorov
,
A. G.
,
2012
, “
Using Amphiphilic Nanostructures to Enable Long-Range Ensemble Coalescence and Surface Rejuvenation in Dropwise Condensation
,”
ACS Nano
,
6
(
4
), pp.
3262
3268
.
27.
Stylianou
,
S.
, and
Rose
,
J.
,
1980
, “
Dropwise Condensation on Surfaces Having Different Thermal Conductivities
,”
ASME J. Heat Transfer
,
102
(
3
), pp.
477
482
.
28.
Cho
,
H. J.
,
Preston
,
D. J.
,
Zhu
,
Y.
, and
Wang
,
E. N.
,
2016
, “
Nanoengineered Materials for Liquid-Vapour Phase-Change Heat Transfer
,”
Nat. Rev. Mater.
,
2
, p.
16092
.
29.
Miljkovic
,
N.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Effect of Droplet Morphology on Growth Dynamics and Heat Transfer During Condensation on Superhydrophobic Nanostructured Surfaces
,”
ACS Nano
,
6
(
2
), pp.
1776
1785
.
30.
Miljkovic
,
N.
,
Enright
,
R.
,
Nam
,
Y.
,
Lopez
,
K.
,
Dou
,
N.
,
Sack
,
J.
, and
Wang
,
E. N.
,
2013
, “
Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces
,”
Nano Lett.
,
13
(1), pp.
179
187
.
31.
Miljkovic
,
N.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2013
, “
Condensation Heat Transfer on Superhydrophobic Surfaces
,”
MRS Bull.
,
38
(5), pp.
397
406
.
32.
Wier
,
K. A.
, and
McCarthy
,
T. J.
,
2006
, “
Condensation on Ultrahydrophobic Surfaces and Its Effect on Droplet Mobility: Ultrahydrophobic Surfaces Are Not Always Water Repellant
,”
Langmuir
,
22
(6), pp.
2433
2436
.
33.
Cheng
,
J.
,
Vandadi
,
A.
, and
Chen
,
C.-L.
,
2012
, “
Condensation Heat Transfer on Two-Tier Superhydrophobic Surfaces
,”
Appl. Phys. Lett.
,
101
, p.
131909
.
34.
Bonner
,
R. W.
, III
,
2013
, “
Correlation for Dropwise Condensation Heat Transfer: Water, Organic Fluids, and Inclination
,”
Int. J. Heat Mass Transfer
,
61
, pp.
245
253
.
35.
Enright
,
R.
,
Miljkovic
,
N.
,
Al-Obeidi
,
A.
,
Thompson
,
C. V.
, and
Wang
,
E.
,
2012
, “
Condensation on Superhydrophobic Surfaces: The Role of Local Energy Barriers and Structure Length Scale
,”
Langmuir
,
28
(40), pp.
14424
14432
.
You do not currently have access to this content.