A desirable feature of any parameter estimation method is to obtain as much information as possible with one experiment. However, achieving multiple objectives with one experiment is often not possible. In the field of thermal parameter estimation, a determination of thermal conductivity, volumetric heat capacity, heat addition rate, surface emissivity, and convection coefficient may be desired from a set of temperature measurements in an experiment where a radiant heat source is used. It would not be possible to determine all of these parameters from such an experiment; more information would be needed. The work presented in the present research shows how thermal parameters can be determined from temperature measurements using complementary experiments where the same material is tested more than once using a different geometry or heating configuration in each experiment. The method of ordinary least squares is used in order to fit a mathematical model to a temperature history in each case. Several examples are provided using one-dimensional conduction experiments, with some having a planar geometry and some having a cylindrical geometry. The parameters of interest in these examples are thermal conductivity and volumetric heat capacity. Sometimes, both of these parameters cannot be determined simultaneously from one experiment but utilizing two complementary experiments may allow each of the parameters to be determined. An examination of confidence regions is an important topic in parameter estimation and this aspect of the procedure is addressed in the present work. A method is presented as part of the current research by which confidence regions can be found for results from a single analysis of multiple experiments.

References

References
1.
Beck
,
J.
, and
Arnold
,
K.
,
1977
,
Parameter Estimation
,
Wiley
,
New York
.
2.
Parker
,
W.
,
Jenkins
,
R.
,
Butler
,
C.
, and
Abbott
,
G.
,
1961
, “
Flash Method of Determining Thermal Diffusivity, Heat Capacity and Thermal Conductivity
,”
J. Appl. Phys.
,
32
(
9
), pp.
1679
1684
.
3.
Wagner
,
R.
, and
Clauser
,
C.
,
2005
, “
Evaluating Thermal Response Tests Using Parameter Estimation for Thermal Conductivity and Thermal Capacity
,”
J. Geophys. Eng.
,
2
(
4
), pp.
349
356
.
4.
Shonder
,
J.
, and
Beck
,
J. V.
,
1999
, “
Determining Effective Soil Formation Thermal Properties From Field Data Using a Parameter Estimation Technique
,”
ASHRAE Trans.
,
105
(Pt. 1), pp. 458–466.
5.
Bozzoli
,
F.
,
Pagliarini
,
G.
,
Rainieri
,
S.
, and
Schiavi
,
L.
,
2011
, “
Estimation of Soil and Grout Thermal Properties Through a TSPEP (Two-Step Parameter Estimation Procedure) Applied to TRT (Thermal Response Test) Data
,”
Energy
,
36
(
2
), pp.
839
846
.
6.
Wagner
,
B. J.
,
1992
, “
Simultaneous Parameter Estimation and Contaminant Source Characterization for Coupled Groundwater Flow and Contaminant Transport Modelling
,”
J. Hydrol.
,
135
(
1–4
), pp.
275
303
.
7.
Van der Merwe
,
R.
, and
Wan
,
E.
,
2001
, “
The Square-Root Unscented Kalman Filter for State and Parameter-Estimation
,”
IEEE International Conference on Acoustics, Speech, and Signal Processing
(
ICASSP
), Salt Lake City, UT, May 7–11, pp.
3461
3464
.
8.
Wang
,
S.
, and
Xu
,
X.
,
2006
, “
Parameter Estimation of Internal Thermal Mass of Building Dynamic Models Using Genetic Algorithm
,”
Energy Convers. Manage.
,
47
(
13
), pp.
1927
1941
.
9.
Chen
,
T.
, and
Athienitis
,
A.
,
2003
, “
Investigation of Practical Issues in Building Thermal Parameter Estimation
,”
Build. Environ.
,
38
(
8
), pp.
1027
1038
.
10.
Dewson
,
T.
,
Day
,
B.
, and
Irving
,
A.
,
1993
, “
Least Squares Parameter Estimation of a Reduced Order Thermal Model of an Experimental Building
,”
Build. Environ.
,
28
(
2
), pp.
127
137
.
11.
Dowding
,
K.
,
Beck
,
J.
, and
Blackwell
,
B.
,
1996
, “
Estimation of Directional-Dependent Thermal Properties in a Carbon-Carbon Composite
,”
Int. J. Heat Mass Transfer
,
39
(
15
), pp.
3157
3164
.
12.
Jarny
,
Y.
,
Ozisik
,
M. N.
, and
Bardon
,
J. P.
,
1991
, “
A General Optimization Method Using Adjoint Equation for Solving Multidimensional Inverse Heat Conduction
,”
Int. J. Heat Mass Transfer
,
34
(
11
), pp.
2911
2919
.
13.
Cohen
,
E.
,
Yehudith
,
B.
,
Mannheim
,
C.
, and
Saguy
,
I.
,
1994
, “
Kinetic Parameter Estimation for Quality Change During Continuous Thermal Processing of Grapefruit Juice
,”
J. Food Sci.
,
59
(
1
), pp.
155
158
.
14.
Jurkowski
,
T.
,
Jarny
,
Y.
, and
Delaunay
,
D.
,
1997
, “
Estimation of Thermal Conductivity of Thermoplastics Under Moulding Conditions: An Apparatus and an Inverse Algorithm
,”
Int. J. Heat Mass Transfer
,
40
(
17
), pp.
4169
4181
.
15.
Mejias
,
M.
,
Orlande
,
H.
, and
Ozisik
,
M.
,
1999
, “
A Comparison of Different Parameter Estimation Techniques for the Identification of Thermal Conductivity Components of Orthotropic Solids
,”
Third International Conference on Inverse Problems in Engineering
, Port Ludlow, WA, June 13–18, Paper No. HT14.
16.
Beck
,
J.
, and
Woodbury
,
K.
,
1998
, “
Inverse Problems and Parameter Estimation: Integration of Measurements and Analysis
,”
Meas. Sci. Technol.
,
9
(
9
), p.
839
.
17.
Dantas
,
L.
,
Orlande
,
H.
, and
Cotta
,
R.
,
2002
, “
Estimation of Dimensionless Parameters of Luikov's System for Heat and Mass Transfer in Capillary Porous Media
,”
Int. J. Therm. Sci.
,
41
(
3
), pp.
217
227
.
18.
Mehra
,
R.
,
1974
, “
Optimal Input Signals for Parameter Estimation in Dynamic Systems—Survey and New Results
,”
IEEE Trans. Autom. Control
,
19
(
6
), pp.
753
768
.
19.
Burnham
,
A.
, and
Dinh
,
L.
,
2007
, “
A Comparison of Isoconversional and Model-Fitting Approaches to Kinetic Parameter Estimation and Application Predictions
,”
J. Therm. Anal. Calorim.
,
89
(
2
), pp.
479
490
.
20.
Emery
,
A.
,
Blackwell
,
B.
, and
Dowding
,
K.
,
2002
, “
The Relationship Between Information, Sampling Rates, and Parameter Estimation Models
,”
ASME J. Heat Transfer
,
124
(
6
), pp.
1192
1199
.
21.
Beck
,
J. V.
,
de Monte
,
F.
, and
Amos
,
D. E.
,
2017
, “
Optimum Design of Complementary Transient Experiments for Estimating Thermal Properties
,”
Ninth International Conference on Inverse Problems in Engineering (ICIPE)
, Waterloo, ON, Canada, May 23–26, Paper No.
11T
.
22.
Haji-Sheikh
,
A.
,
de Monte
,
F.
, and
Beck
,
J. V.
,
2013
, “
Temperature Solutions in Thin Films Using Thermal Wave Green's Function Solution Equation
,”
Int. J. Heat Mass Transfer
,
62
, pp.
78
86
.
23.
de Monte
,
F.
, and
Haji-Sheikh
,
A.
,
2017
, “
Bio-Heat Diffusion Under Local Thermal Non-Equilibrium Conditions Using Dual-Phase Lag-Based Green's Functions
,”
Int. J. Heat Mass Transfer
,
113
, pp.
1291
1305
.
24.
Beck
,
J. V.
,
Mishra
,
D.
, and
Dolan
,
K.
,
2017
, “
Utilization of Generalized Transient Heat Conduction Solutions in Parameter Estimation
,”
Ninth International Conference on Inverse Problems in Engineering (ICIPE)
, Waterloo, ON, Canada, May 23–26, Paper No.
05T
.
25.
Cole
,
K.
,
Beck
,
J.
,
Haji-Sheikh
,
A.
, and
Litkouhi
,
B.
,
2011
,
Heat Conduction Using Green's Functions
,
2nd ed.
,
Hemisphere Press
,
New York
.
26.
Cole
,
K. D.
,
Beck
,
J. V.
,
Woodbury
,
K. A.
, and
de Monte
,
F.
,
2014
, “
Intrinsic Verification and a Heat Conduction Database
,”
Int. J. Therm. Sci.
,
78
, pp.
36
47
.
27.
Beck
,
J.
,
McMasters
,
R.
,
Dowding
,
K.
, and
Amos
,
D.
,
2006
, “
Intrinsic Verification Methods in Linear Heat Conduction
,”
Int. J. Heat Mass Transfer
,
49
(17–18), pp.
2984
2994
.
You do not currently have access to this content.