Given the largely untapped solar energy resource, there has been an ongoing international effort to engineer improved solar-harvesting technologies. Toward this, the possibility of engineering a solar selective volumetric receiver (SSVR) has been explored in the present study. Common heat transfer liquids (HTLs) typically have high transmissivity in the visible-near infrared (VIS-NIR) region and high emission in the midinfrared region, due to the presence of intramolecular vibration bands. This precludes them from being solar absorbers. In fact, they have nearly the opposite properties from selective surfaces such as cermet, TiNOX, and black chrome. However, liquid receivers which approach the radiative properties of selective surfaces can be realized through a combination of anisotropic geometries of metal nanoparticles (or broad band absorption multiwalled carbon nanotubes (MWCNTs)) and transparent heat mirrors. SSVRs represent a paradigm shift in the manner in which solar thermal energy is harnessed and promise higher thermal efficiencies (and lower material requirements) than their surface absorption-based counterparts. In the present work, the “effective” solar absorption to infrared emission ratio has been evaluated for a representative SSVR employing copper nanospheroids/MWCNTs and Sn-In2O3 based heat mirrors. It has been found that a solar selectivity comparable to (or even higher than) cermet-based Schott receiver is achievable through control of the cut-off solar selective wavelength. Theoretical calculations show that the thermal efficiency of Sn-In2O3 based SSVR is 6–7% higher than the cermet-based Schott receiver. Furthermore, stagnation temperature experiments have been conducted on a laboratory-scale SSVR to validate the theoretical results. It has been found that higher stagnation temperatures (and hence higher thermal efficiencies) compared to conventional surface absorption-based collectors are achievable through proper control of nanoparticle concentration.

References

References
1.
Sani
,
E.
,
Barison
,
S.
,
Pagura
,
C.
,
Mercatelli
,
L.
,
Sansoni
,
P.
,
Fontani
,
D.
,
Jafrancesco
,
D.
, and
Francini
,
F.
,
2010
, “
Carbon Nanohorns-Based Nanofluids as Direct Sunlight Absorbers
,”
Opt. Express
,
18
(5), pp.
5179
5187
.
2.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Otanicar
,
T. P.
,
Adrian
,
R.
, and
Prasher
,
R.
,
2011
, “
Nanofluid Optical Property Characterization: Towards Efficient Direct Absorption Solar Collectors
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
225
.
3.
Kameya
,
Y.
, and
Hanamura
,
K.
,
2011
, “
Enhancement of Solar Radiation Absorption Using Nanoparticle Suspension
,”
Sol. Energy
,
85
(2), pp.
299
307
.
4.
Sani
,
E.
,
Mercatelli
,
L.
,
Barison
,
S.
,
Pagura
,
C.
,
Agresti
,
F.
,
Colla
,
L.
, and
Sansoni
,
P.
,
2011
, “
Potential of Carbon Nanohorn-Based Suspensions for Solar Thermal Collectors
,”
Sol. Energy Mater. Sol. Cells
,
95
(
11
), pp.
2994
3000
.
5.
Colangelo
,
G.
,
Favale
,
E.
,
de Risi
,
A.
, and
Laforgia
,
D.
,
2013
, “
A New Solution for Reduced Sedimentation Flat Panel Solar Thermal Collector Using Nanofluids
,”
Appl. Energy
,
111
, pp.
80
93
.
6.
Colangelo
,
G.
,
Favale
,
E.
,
de Risi
,
A.
, and
Laforgia
,
D.
,
2012
, “
Results of Experimental Investigations on the Heat Conductivity of Nanofluids Based on Diathermic Oil for High Temperature Applications
,”
Appl. Energy
,
97
, pp.
828
833
.
7.
Khullar
,
V.
,
Bhalla
,
V.
, and
Tyagi
,
H.
,
2017
, “
Potential Heat Transfer Fluids (Nanofluids) for Direct Volumetric Absorption-Based Solar Thermal Systems
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
1
), p.
011009
.
8.
Tyagi
,
H.
,
Phelan
,
P.
, and
Prasher
,
R.
,
2009
, “
Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector
,”
ASME J. Sol. Energy Eng.
,
131
(
4
), p.
041004
.
9.
Lenert
,
A.
, and
Wang
,
E. N.
,
2012
, “
Optimization of Nanofluid Volumetric Receivers for Solar Thermal Energy Conversion
,”
Sol. Energy
,
86
(
1
), pp.
253
265
.
10.
Otanicar
,
T. P.
,
Phelan
,
P. E.
,
Prasher
,
R. S.
,
Rosengarten
,
G.
, and
Taylor
,
R. A.
,
2010
, “
Nanofluid-Based Direct Absorption Solar Collector
,”
J. Renewable Sustainable Energy
,
2
(
3
), p.
033102
.
11.
Khullar
,
V.
,
Tyagi
,
H.
,
Patrick
,
P. E.
,
Otanicar
,
T. P.
,
Singh
,
H.
, and
Taylor
,
R. A.
,
2013
, “
Solar Energy Harvesting Using Nanofluids-Based Concentrating Solar Collector
,”
ASME J. Nanotechnol. Eng. Med.
,
3
(
3
), p.
031003
.
12.
Veeraragavan
,
A.
,
Lenert
,
A.
,
Yilbas
,
B.
,
Al-Dini
,
S.
, and
Wang
,
E. N.
,
2012
, “
Analytical Model for the Design of Volumetric Solar Flow Receivers
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
556
564
.
13.
Khullar
,
V.
,
Tyagi
,
H.
,
Hordy
,
N.
,
Otanicar
,
T. P.
,
Hewakuruppu
,
Y.
,
Modi
,
P.
, and
Taylor
,
R. A.
,
2014
, “
Harvesting Solar Thermal Energy Through Nanofluid-Based Volumetric Absorption Systems
,”
Int. J. Heat Mass Transfer
,
77
, pp.
377
384
.
14.
Lv
,
W.
,
Phelan
,
P. E.
,
Swaminathan
,
R.
,
Otanicar
,
T. P.
, and
Taylor
,
R. A.
,
2012
, “
Multifunctional Core-Shell Nanoparticle Suspensions for Efficient Absorption
,”
ASME J. Sol. Energy Eng.
,
135
(
2
), p.
021004
.
15.
Lee
,
B. J.
,
Park
,
K.
,
Walsh
,
T.
, and
Xu
,
L.
,
2012
, “
Radiative Heat Transfer Analysis in Plasmonic Nanofluids for Direct Solar Thermal Absorption
,”
ASME J. Sol. Energy Eng.
,
134
(2), p.
021009
.
16.
Hordy
,
N.
,
Rabilloud
,
D.
,
Meunier
,
J.-L.
, and
Coulombe
,
S.
,
2014
, “
High Temperature and Long-Term Stability of Carbon Nanotube Nanofluids for Direct Absorption Solar Thermal Collectors
,”
Sol. Energy
,
105
, pp.
82
90
.
17.
Khullar
,
V.
,
2014
, “
Heat Transfer Analysis and Optical Characterization of Nanoparticle Dispersion-Based Solar Thermal Systems
,” Ph.D. thesis, Indian Institute of Technology Ropar, Rupnagar, India.
18.
Hewakuruppu
,
Y. L.
,
Taylor
,
R. A.
,
Tyagi
,
H.
,
Khullar
,
V.
,
Otanicar
,
T.
,
Coulombe
,
S.
, and
Hordy
,
N.
,
2015
, “
Limits of Selectivity of Direct Volumetric Solar Absorption
,”
Sol. Energy
,
114
, pp.
206
216
.
19.
Mesgari
,
S.
,
Taylor
,
R. A.
,
Hjerrild
,
N. E.
,
Crisostomoa
,
F.
,
Li
,
Q.
, and
Scott
,
J.
,
2016
, “
An Investigation of Thermal Stability of Carbon Nanofluids for Solar Thermal Applications
,”
Sol. Energy Mater. Sol. Cells
,
157
, pp.
652
659
.
20.
Kennedy
,
C. E.
,
2002
, “
Review of Mid- to High- Temperature Solar Selective Absorber Materials
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/TP-520-31267
.https://www.osti.gov/biblio/15000706
21.
Otanicar
,
T. P.
,
Golden
,
J. S.
, and
Phelan
,
P. E.
,
2009
, “
Optical Properties of Liquids for Direct Absorption Solar Thermal Energy Systems
,”
Sol. Energy
,
83
(
7
), pp.
969
977
.
22.
Brewster
,
M. Q.
,
1922
,
Thermal Radiative Transfer and Properties
,
Wiley
, Hoboken, NJ.
23.
Bohren
,
C. F.
, and
Huffman
,
D.
,
1983
,
Absorbing and Scattering of Light by Small Particles
,
Wiley
, New York.
24.
Fan
,
J. C.
, and
Bachner
,
F. J.
,
1976
, “
Transparent Heat Mirrors for Solar-Energy Applications
,”
Appl. Opt.
,
15
(
4
), pp.
1012
1017
.
25.
Haacke
,
G.
,
1977
, “
Evaluation of Cadmium Stannate Films for Solar Heat Collectors
,”
Appl. Phys. Lett.
,
30
(
8
), p.
380
.
26.
Lampert
,
C. M.
,
1982
, “
Materials Chemistry and Optical Properties of Transparent Conductive Thin Films for Solar Energy Utilization
,”
Ind. Eng. Chem. Prod. Res. Develop.
,
21
(
4
), pp.
612
616
.
27.
Sönnichsen
,
C.
,
Franzl
,
T.
,
Wilk
,
T.
,
von Plessen
,
G.
, and
Feldmann
,
J.
,
2002
, “
Drastic Reduction of Plasmon Damping in Gold Nanorods
,”
Phys. Rev. Lett.
,
88
(
7
), p.
077402
.
28.
Neumann
,
O.
,
Urban
,
A. S.
,
Day
,
J.
,
Lal
,
S.
,
Nordlander
,
P.
, and
Halas
,
N. J.
,
2013
, “
Solar Vapor Generation Enabled by Nanoparticles
,”
ACS Nano
,
7
(
1
), pp.
42
49
.
29.
Kelly
,
K. L.
,
Coronado
,
E.
,
Zhao
,
L. L.
, and
Schatz
,
G. C.
,
2003
, “
The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment
,”
J. Phys. Chem. B
,
107
, pp.
668
677
.
30.
Bardhan
,
R.
,
Grady
,
N. K.
,
Ali
,
T.
, and
Halas
,
N. J.
,
2010
, “
Metallic Nanoshells With Semiconductor Cores: Optical Characteristics Modified by Core Medium Properties
,”
ACS Nano
,
4
(
10
), pp.
6169
6179
.
31.
Kreibig
,
U.
, and
Vollmer
,
M.
,
1995
,
Optical Properties of Metal Clusters
,
Springer-Verlag
,
Berlin
.
32.
Lynch
,
D. W.
, and
Hunter
,
W. R.
,
1998
,
Handbook of Optical Constants of Solids
,
Academic Press
, San Diego, CA.
33.
Drotning
,
W. D.
,
1978
, “
Optical Properties of Solar-Absorbing Oxide Particles Suspended in a Molten Salt Heat Transfer Fluid
,”
Sol. Energy
,
20
(
4
), pp.
313
319
.
34.
Fan
,
J. C. C.
,
Bachner
,
F. J.
,
Foley
,
G. H.
, and
Zavracky
,
P. M.
,
1974
, “
Transparent Heat Mirror Films of TiO2/Ag/TiO2 for Solar Energy Collection and Radiation Insulation
,”
Appl. Phys. Lett.
,
25
(
12
), p.
693
.
35.
ASMT, 2012, “Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface,” ASTM International, West Conshohocken, PA, Standard No.
ASTM G173-03(2012)
.https://www.astm.org/Standards/G173.htm
36.
Benz
,
N.
,
2011
, “
SCHOTT Absorberrohr und das DLR als Entwicklungspartner
,” SCHOTT Sol CSP GmbH, Jülich, Germany, accessed Feb. 12, 2018, http://www.dlr.de/Portaldata/73/Resources/dokumente/Soko/Soko2011/N_Benz-Schott_Receiver_u_DLR_als_Partner.pdf
37.
Barriga
,
J.
,
Ruiz-de-Gopegui
,
U.
,
Goikoetxea
,
J.
,
Coto
,
B.
, and
Cachafeiro
,
H.
,
2014
, “
Selective Coatings for New Concepts of Parabolic Trough Collectors
,”
Energy Procedia
,
49
, pp.
30
39
.
38.
Price
,
H.
,
Lu¨pfert
,
E.
,
Kearney
,
D.
,
Zarza
,
E.
,
Cohen
,
G.
,
Gee
,
R.
, and
Mahoney, R.
,
2002
, “
Advances in Parabolic Trough Solar Power Technology
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
109
125
.
39.
Moss
,
T. A.
, and
Brosseau
,
D. A.
,
2005
, “
Final Test Results for the Schott HCE on a LS-2 Collector
,” Sandia National Laboratories, Albuquerque, NM, Sandia Report No.
SAND2005-4034
.http://prod.sandia.gov/techlib/access-control.cgi/2005/054034.pdf
40.
Salah
,
M. B.
,
Askri
,
F.
,
Slimi
,
K.
, and
Nasrallah
,
S. B.
,
2004
, “
Numerical Resolution of the Radiative Transfer Equation in a Cylindrical Enclosure With the Finite-Volume Method
,”
Int. J. Heat Mass Transfer
,
74
(10–11), pp.
2501
2509
.
41.
Modest
,
M. F.
,
2003
,
Radiative Heat Transfer
,
Academic Press
, New York.
42.
Forristall
,
R.
,
2003
, “
Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/TP-550-34169
.http://fac.ksu.edu.sa/sites/default/files/34169.pdf
43.
Cengel
,
Y. A.
,
2003
,
Heat Transfer: A Practical Approach
,
McGraw-Hill
, San Diego, CA.
44.
Eastman Chemical Company, 2018, “
THERMINOL® VP-1 Heart Transfer Fluid
,” Eastman Chemical Company, Kingsport, TN, accessed Feb. 12, 2018, https://www.therminol.com/products/Therminol-VP1
45.
Selvakumar
,
N.
, and
Barshilia
,
H. C.
, 2012, “
Review of Physical Vapor Deposited (PVD) Spectrally Selective Coatings for Mid- and High-Temperature Solar Thermal Applications
,”
Sol. Energy Mater. Sol. Cells
,
98
, pp.
1
23
.
46.
Joy
,
N. A.
,
Janiszewski
,
B. K.
,
Novak
,
S.
,
Johnson
,
T. W.
,
Raghunathan
,
A.
,
Hartley
,
J.
, and
Carpenter
,
M. A.
,
2013
, “
Thermal Stability of Gold Nanorods for High-Temperature Plasmonic Sensing
,”
J. Phys. Chem. C
,
117
(
22
), pp.
11718
11724
.
47.
Radloff
,
C.
, and
Halas
,
N. J.
,
2001
, “
Enhanced Thermal Stability of Silica-Encapsulated Metal Nanoshells
,”
Appl. Phys. Lett.
,
79
(
5
), p.
674
.
48.
Lisiecki, I.
,
Sack-Kongehl, H.
,
Weiss, K.
,
Urban, J.
, and
Pileni, M.-P.
, 2000, “
Annealing Process of Anisotropic Copper Nanocrystals. 2. Rods
,”
Langmuir
,
16
(23), pp. 8807–8808.
49.
Karabacak
,
T.
,
DeLuca
,
J. S.
,
Wang
,
P.-I.
,
Ten Eyck
,
G.
,
Ye
,
D.
,
Wang
,
G.-C.
, and
Lu
,
T. M.
,
2006
, “
Low Temperature Melting of Copper Nanorod Arrays
,”
J. Appl. Phys.
,
99
(
6
), p.
064304
.
50.
Hordy
,
N.
,
Coulombe
,
S.
, and
Meunier
,
J.-L.
,
2013
, “
Plasma Functionalization of Carbon Nanotubes for the Synthesis of Stable Aqueous Nanofluids and Poly (Vinyl Alcohol) Nanocomposites
,”
Plasma Processes Polym.
,
10
(
2
), pp.
110
118
.
51.
Almeco Sol GmBH
, 2014, “
TiNOX Energy
,” Almeco GmBH, Bernburg, Germany, accessed Oct. 16, 2017, http://www.almecogroup.com/uploads/1074-ALMECO_TinoxEnergy_ENG_S402_05_2013_mail.pdf
52.
Lenert
,
A.
,
2010
, “
Nanofluid-Based Receivers for High-Temperature, High-Flux Direct Solar Collectors
,”
Master's thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/61881
53.
Taylor, R. A.
,
Hewakuruppu, Y.
,
DeJarnette, D.
, and
Otanicar, T. P.
, 2016, “
Comparison of Selective Transmitters for Solar Thermal Applications
,”
Appl. Opt.
,
55
(14), pp. 3829–3839.
You do not currently have access to this content.