A high-temperature natural circulation loop (NCL) using supercritical carbon dioxide as loop fluid is modeled to study the effects of operating variables and relevant design parameters on loop performance. The steady-state system model duly considers the axial conduction through loop fluid as well as loop wall and heat transfer with surroundings. The heat source is considered to be a heater with controlled heat flux and the heat sink is modeled as an end heat exchanger with water as the external cold fluid. The governing conservation equations for mass, momentum, and energy are nondimensionalized and are solved numerically discretizing in finite volume method. The numerical results are validated against experimental results reported in the literature in terms of modified Grashof number (Grm) and Reynolds number (Re). Results show that heat loss to the ambient affects the loop performance significantly for the high-temperature loop. It is also observed that the heat input at which the circulation becomes maximum can be increased by increasing either the diameter and/or the loop height. However, better performance is obtained with larger diameter tubes instead of longer loop heights. Axial conduction is seen to have a negligible effect on the overall loop performance. Boussinesq approximation appears to be reasonable as the operating conditions of the supercritical loop are away from the critical point.

References

References
1.
Kumar
,
K. K.
, and
Ram Gopal
,
M.
,
2009
, “
Carbon Dioxide as a Secondary Fluid in Natural Circulation Loops
,”
J. Process Mech. Eng.
,
223
(
3
), pp.
189
194
.
2.
Wang
,
K.
,
Eisele
,
M.
,
Hwang
,
Y.
, and
Radermacher
,
R.
,
2010
, “
Review of Secondary Loop Refrigeration Systems
,”
Int. J. Refrig.
,
33
(
2
), pp.
212
234
.
3.
Zvirin
,
Y.
,
1982
, “
A Review of Natural Circulation Loops in Pressurized Water Reactors and Other Systems
,”
Nucl. Eng. Des.
,
67
(2), pp.
203
225
.
4.
Kim
,
M. H.
,
Pettersen
,
J.
, and
Bullard
,
C. W.
,
2004
, “Fundamental Process and System Design Issues in CO2 Vapor Compression Systems,”
Prog. Energy Combust. Sci.
, 30(2), pp. 119–174.
5.
Dostal
,
V.
,
Hejzlar
,
P.
, and
Driscoll
,
M. J.
,
2006
, “
The Supercritical Carbon Dioxide Power Cycle: Comparison to Other Advanced Power Cycles
,”
Nucl. Technol.
,
154
(
3
), pp.
283
301
.
6.
Fourie
,
F. C. V. N.
,
Schwarz
,
C. E.
, and
Knoetze
,
J. H.
,
2008
, “
Phase Equilibria of Alcohols in Supercritical Fluids—Part I: The Effect of the Position of the Hydroxyl Group for Linear C8 Alcohols in Supercritical Carbon Dioxide
,”
J. Supercrit. Fluids
,
47
(
2
), pp.
161
167
.
7.
Bondioli
,
P.
,
Mariani
,
C.
,
Lanzani
,
A.
,
Fedeli
,
E.
,
Mossa
,
A.
, and
Muller
,
A.
,
1992
, “
Lampante Olive Oil Refining With Supercritical Carbon Dioxide
,”
J. Am. Oil Chem. Soc.
,
69
(
5
), pp.
477
480
.
8.
Yamaguchi
,
H.
,
Zhang
,
X. R.
, and
Fujima
,
K.
,
2008
, “
Basic Study on New Cryogenic Refrigeration Using CO2 Solid-Gas Two Phase Flow
,”
Int. J. Refrig.
,
31
(
3
), pp.
404
410
.
9.
Ochsner
,
K.
,
2008
, “
Carbon Dioxide Heat Pipe in Conjunction With a Ground Source Heat Pump (GSHP)
,”
Appl. Therm. Eng.
,
28
(
16
), pp.
2077
2082
.
10.
Kim
,
D. E.
,
Kim
,
M. H.
,
Cha
,
J. E.
, and
Kim
,
S. O.
,
2008
, “
Numerical Investigation on Thermal-Hydraulic Performance of New Printed Circuit Heat Exchanger Model
,”
Nucl. Eng. Des.
,
238
(
12
), pp.
3269
3276
.
11.
Kreitlow
,
D. B.
, and
Reistad
,
G. M.
,
1978
, “
Themosyphon Models for Downhole Heat Exchanger Application in Shallow Geothermal Systems
,”
ASME J. Heat Transfer
,
100
(4), pp.
713
719
.
12.
Torrance
,
K. E.
,
1979
, “
Open–Loop Thermosyphons With Geological Application
s,”
ASME J. Heat Transfer
, 101(4), pp.
677
683
.
13.
Vijayan
,
P.
, and
Austregesilo
,
H.
,
1994
, “
Scaling Laws for Single-Phase Natural Circulation Loops
,”
Nucl. Eng. Des.
,
152
(
1–3
), pp.
331
347
.
14.
Vijayan
,
P. K.
,
2002
, “
Experimental Observations on the General Trends of the Steady State and Stability Behaviour of Single-Phase Natural Circulation Loops
,”
Nucl. Eng. Des.
,
215
(
1–2
), pp.
139
152
.
15.
Kumar
,
K. K.
, and
Ram Gopal
,
M.
,
2009
, “
Steady-State Analysis of CO2 Based Natural Circulation Loops With End Heat Exchangers
,”
Appl. Therm. Eng.
,
29
(
10
), pp.
1893
1903
.
16.
Yadav
,
A. K.
,
Ram Gopal
,
M.
, and
Bhattacharyya
,
S.
,
2012
, “
CFD Analysis of a CO2 Based Natural Circulation Loop With End Heat Exchangers
,”
Appl. Therm. Eng.
,
36
, pp.
288
295
.
17.
Chen
,
L.
,
Zhang
,
X. R.
,
Yamaguchi
,
H.
, and
Liu
,
Z. S.
,
2010
, “
Effect of Heat Transfer on the Instabilities and Transitions of Supercritical CO2 Flow in a Natural Circulation Loop
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4101
4111
.
18.
Zhang
,
X.-R.
,
Chen
,
L.
, and
Yamaguchi
,
H.
,
2010
, “
Natural Convective Flow and Heat Transfer of Supercritical CO2 in a Rectangular Circulation Loop
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4112
4122
.
19.
Swapnalee
,
B. T.
,
Vijayan
,
P. K.
,
Sharma
,
M.
, and
Pilkhwal
,
D. S.
,
2012
, “
Steady State Flow and Static Instability of Supercritical Natural Circulation Loops
,”
Nucl. Eng. Des.
,
245
, pp.
99
112
.
20.
Lomperski
,
S.
,
Cho
,
D.
, Jain, R., and Corradini, M. L.,
2004
, “Stability of a Natural Circulation Loop With a Fluid Heated Through the Thermodynamic Pseudocritical Point,” International Congress on Advances in Nuclear Power Plants (ICAPP), Pittsburgh, PA, June 13–17, Paper No.
4268
.https://inis.iaea.org/search/search.aspx?orig_q=RN:40038045
21.
Jain
,
P. K.
, and
Rizwan-uddin
,
2008
, “
Numerical Analysis of Supercritical Flow Instabilities in a Natural Circulation Loop
,”
Nucl. Eng. Des.
,
238
(
8
), pp.
1947
1957
.
22.
Swapnalee
,
B. T.
, and
Vijayan
,
P. K.
,
2011
, “
A Generalized Flow Equation for Single Phase Natural Circulation Loops Obeying Multiple Friction Laws
,”
Int. J. Heat Mass Transfer
,
54
(
11–12
), pp.
2618
2629
.
23.
Sharma
,
M.
,
Vijayan
,
P. K.
,
Pilkhwal
,
D. S.
, and
Asako
,
Y.
,
2013
, “
Steady State and Stability Characteristics of Natural Circulation Loops Operating With Carbon Dioxide at Supercritical Pressures for Open and Closed Loop Boundary Conditions
,”
Nucl. Eng. Des.
,
265
, pp.
737
754
.
24.
Archana
,
V.
,
Vaidya
,
A. M.
, and
Vijayan
,
P. K.
,
2015
, “
Flow Transients in Supercritical CO2 Natural Circulation Loop
,”
Procedia Eng.
,
127
, pp.
1189
1196
.
25.
Sarkar
,
M. K. S.
,
Tilak
,
A. K.
, and
Basu
,
D. N.
,
2014
, “
A State-of-the-Art Review of Recent Advances in Supercritical Natural Circulation Loops for Nuclear Applications
,”
Ann. Nucl. Energy
,
73
, pp.
250
263
.
26.
Rao
,
N. T.
,
Oumer
,
A. N.
, and
Jamaludin
,
U. K.
,
2016
, “
State-of-the-Art on Flow and Heat Transfer Characteristics of Supercritical CO2 in Various Channels
,”
J. Supercrit. Fluids
,
116
, pp.
132
147
.
27.
Cabeza
,
L. F.
,
de Gracia
,
A.
,
Fernández
,
A. I.
, and
Farid
,
M. M.
,
2017
, “
Supercritical CO2 as Heat Transfer Fluid: A Review
,”
Appl. Therm. Eng.
,
125
, pp.
799
810
.
28.
Chen
,
L.
,
Zhang
,
X.-R.
,
Cao
,
S.
, and
Bai
,
H.
,
2012
, “
Study of Trans-Critical CO2 Natural Convective Flow With Unsteady Heat Input and Its Implications on System Control
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
7119
7132
.
29.
Cao
,
Y.
, and
Zhang
,
X.-R.
,
2012
, “
Flow and Heat Transfer Characteristics of Supercritical CO2 in a Natural Circulation Loop
,”
Int. J. Therm. Sci.
,
58
, pp.
52
60
.
30.
Liu
,
G.
,
Huang
,
Y.
,
Wang
,
J.
, and
Lv
,
F.
,
2015
, “
Effect of Buoyancy and Flow Acceleration on Heat Transfer of Supercritical CO2 in Natural Circulation Loop
,”
Int. J. Heat Mass Transfer
,
91
, pp.
640
646
.
31.
Liu
,
G.
,
Huang
,
Y.
,
Wang
,
J.
, and
Leung
,
L. H. K.
,
2016
, “
Heat Transfer of Supercritical Carbon Dioxide Flowing in a Rectangular Circulation Loop
,”
Appl. Therm. Eng.
,
98
, pp.
39
48
.
32.
Archana
,
V.
,
Vaidya
,
A. M.
, and
Vijayan
,
P. K.
,
2015
, “
Numerical Modeling of Supercritical CO2 Natural Circulation Loop
,”
Nucl. Eng. Des.
,
293
, pp.
330
345
.
33.
Ding
,
T.
, and
Li
,
Z.
,
2016
, “
Research on Convection Heat Transfer Character of Super Critical Carbon Dioxide Flows Inside Horizontal Tube
,”
Int. J. Heat Mass Transfer
,
92
, pp.
665
674
.
34.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
35.
Nijaguna
,
B. T.
,
1992
,
Thermal Sciences/Engineering Data Book
,
Allied Publishers
,
New Delhi, India
.
36.
Petukhov
,
B. S.
, and
Roizen
,
L. I.
,
1964
, “
Generalized Relationships for Heat Transfer in Turbulent Flow of Gas in Tubes of Annular Section
,”
High Temp.
,
2
, pp.
65
68
.
37.
Churchill
,
S. W.
, and
Chu
,
H. H. S.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Vertical Plate
,”
Int. J. Heat Mass Transfer
,
18
(
11
), pp.
1323
1329
.
38.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2002
, Fundamentals of Heat and Mass Transfer, 5th ed., John Wiley & Sons, Singapore.
39.
Basu
,
D. N.
,
Bhattacharyya
,
S.
, and
Das
,
P. K.
,
2008
, “
Effect of Geometric Parameters on Steady-State Performance of Single-Phase NCL With Heat Loss to Ambient
,”
Int. J. Therm. Sci.
,
47
(
10
), pp.
1359
1373
.
40.
Basu
,
D. N.
,
Bhattacharyya
,
S.
, and
Das
,
P. K.
,
2007
, “
Effect of Heat Loss to Ambient on Steady-State Behaviour of a Single-Phase Natural Circulation Loop
,”
Appl. Therm. Eng.
,
27
(
8–9
), pp.
1432
1444
.
41.
NIST, 2011, “Standard Reference Database-REFPROP, Version 9.1,” National Institute of Standards and Technology, Gaithersburg, MD.
42.
MathWorks, 2010, “MATLAB, version 7.10.0 (R2010a),” The MathWorks Inc., Natick, MA.
43.
Mousavian
,
S. K.
,
Misale
,
M.
,
D'Auria
,
F.
, and
Salehi
,
M. A.
,
2004
, “
Transient and Stability Analysis in Single-Phase Natural Circulation
,”
Ann. Nucl. Energy
,
31
(
10
), pp.
1177
1198
.
You do not currently have access to this content.