Estimation of thermal properties, diffusion properties, or chemical–reaction rates from transient data requires that a model is available that is physically meaningful and suitably precise. The model must also produce numerical values rapidly enough to accommodate iterative regression, inverse methods, or other estimation procedures during which the model is evaluated again and again. Applications that motivate the present work include process control of microreactors, measurement of diffusion properties in microfuel cells, and measurement of reaction kinetics in biological systems. This study introduces a solution method for nonisothermal reaction–diffusion (RD) problems that provides numerical results at high precision and low computation time, especially for calculations of a repetitive nature. Here, the coupled heat and mass balance equations are solved by treating the coupling terms as source terms, so that the solution for concentration and temperature may be cast as integral equations using Green's functions (GF). This new method requires far fewer discretization elements in space and time than fully numeric methods at comparable accuracy. The method is validated by comparison with a benchmark heat transfer solution and a commercial code. Results are presented for a first-order chemical reaction that represents synthesis of vinyl chloride.

References

References
1.
Froment
,
G. F.
, and
Bischoff
,
K. B.
,
1979
,
Chemical Reactor Analysis and Design
,
Wiley
,
New York
, pp.
202
204
.
2.
Heinrich
,
R.
, and
Schuster
,
S.
,
1998
, “
The Modeling of Metabolic Systems. Structure, Control and Optimality
,”
BioSystems
,
47
(1–2), pp.
61
77
.
3.
Burghardt
,
A.
, and
Berezowski
,
M.
,
2003
, “
Periodic Solutions in a Porous Catalyst Pellet-Homoclinic Orbits
,”
Chem. Eng. Sci.
,
58
(12), pp.
2657
2670
.
4.
Gas
,
P.
,
Girardeaux
,
C.
,
Mangelinck
,
D.
, and
Portavoce, A.
,
2003
, “
Reaction and Diffusion at Interfaces of Micro- and Nanostructured Materials
,”
Mater. Sci. Eng. B
,
101
(1–3), pp.
43
48
.
5.
Demirel
,
Y.
, and
Sandler
,
S. I.
,
2004
, “
Nonequilibrium Thermodynamics in Engineering and Science
,”
J. Phys. Chem. B
,
108
(1), pp.
31
43
.
6.
Tevatia
,
R.
,
Demirel
,
Y.
, and
Blum
,
P.
,
2014
, “
Influence of Subenvironmental Conditions and Thermodynamic Coupling on a Simple Reaction-Transport Process in Biochemical Systems
,”
Ind. Eng. Chem. Res.
,
53
(18), pp.
7637
7647
.
7.
Demirel
,
Y.
, and
Sandler
,
S. I.
,
2001
, “
Linear Nonequilibrium Thermodynamics Theory for Coupled
,”
Int. J. Heat Mass Transfer
,
44
(13), pp.
2439
2451
.
8.
Rodrigo
,
M.
, and
Mimura
,
M.
,
2001
, “
Exact Solutions of Reaction-Diffusion Systems and Nonlinear Wave Equations
,”
Jpn. J. Ind. Appl. Math.
,
18
, pp.
657
696
.
9.
Turing
,
A.
,
1952
, “
The Chemical Basis of Morphogenesis
,”
Philos. Trans. R. Soc. B
,
237
(641), pp.
37
72
.
10.
Serna
,
H.
,
Munuzun
,
A. P.
, and
Barragan
,
D.
,
2017
, “
Thermodynamic and Morphological Characterization of Turing Patterns in Non-Isothermal Reaction-Diffusion Systems
,”
Phys. Chem. Chem. Phys.
,
19
(22), pp.
14401
14411
.
11.
Lobanova
,
E. S.
,
Shnol
,
E. E.
, and
Ataullakhanov
,
F. I.
,
2004
, “
Complex Dynamics of the Formation of Spatially Localized Standing Structures in the Vicinity of Saddle-Node Bifurcations of Waves in the Reaction-Diffusion Model of Blood Clotting
,”
Phys. Rev. E
,
70
(3), p.
032903
.
12.
Berezhkovski
,
A. M.
,
Coppey
,
M.
, and
Shvartsman
,
S. Y.
,
2009
, “
Signalling Gradients in Cascades of Two-State Reaction Diffusion Systems
,”
PNAS
,
106
(4), pp.
1087
1092
.
13.
Soh
,
S.
,
Byrska
,
M.
,
Kandere-Grzybowska
,
K.
, and
Grzybowski, B. A.
,
2010
, “
Reaction-Diffusion Systems in Intracellular Molecular Transport and Control
,”
Angew. Chem. Int. Ed. Engl.
,
49
(25), pp.
4170
4198
.
14.
Caplan
,
R. S.
, and
Essig
,
A.
,
1999
,
Bioenergetics and Linear Nonequilibrium Thermodynamics: The Steady State
,
Harvard University Press
,
New York
.
15.
Demirel
,
Y.
, and
Sandler
,
S. I.
,
2002
, “
Thermodynamics and Bioenergetics
,”
Biophys. Chem.
,
97
(2–3), pp.
87
111
.
16.
Anita
,
S.
, and
Capasso
,
V.
,
2017
, “Reaction-Diffusion Systems in Epidemiology,” eprint
arXiv:1703.02760
https://arxiv.org/abs/1703.02760.
17.
Elias
,
J.
, and
Clairambault
,
J.
,
2014
, “
Reaction-Diffusion Systems for Spatio-Temporal Intracellular Protein Networks: A Beginners Guide With Two Examples
,”
Comp. Struct. Biotechnol. J.
,
10
(16), pp.
12
22
.
18.
Fahmy
,
E. S.
, and
Abdusalam
,
H. A.
,
2009
, “
Exact Solutions for Some Reaction Diffusion Systems With Nonlinear Reaction Polynomial Terms
,”
Appl. Math. Sci.
,
3
(11), pp.
533
540
.http://m-hikari.com/ams/ams-password-2009/ams-password9-12-2009/fahmyAMS9-12-2009.pdf
19.
Tuncer
,
N.
,
Madzvamuse
,
A.
, and
Meir
,
A. J.
,
2015
, “
Projected Finite Elements for Reaction-Diffusion Systems on Stationary Closed Surfaces
,”
Appl. Numer. Math.
,
96
, pp.
45
71
.
20.
Stakgold
,
I.
,
1979
,
Green's Functions and Boundary Value Problems
,
1st ed.
,
Wiley
,
New York
, Chap. 9.
21.
Taigbenu
,
A. E.
, and
Onyejekwe
,
O. O.
,
1999
, “
Green's Function-Based Integral Approaches to Nonlinear Transient Boundary-Value Problems (II)
,”
Appl. Math. Model.
,
23
(3), pp.
241
253
.
22.
Jones
,
M. R.
, and
Solovjov
,
V. P.
,
2010
, “
Green's Function Approach to Nonlinear Conduction and Surface Radiation Problems
,”
ASME J. Heat Transfer
,
132
(2), p.
024502
.
23.
Flint
,
T. F.
,
Francis
,
J. A.
,
Smith
,
M. C.
, and
Vasileiou, A. N.
,
2018
, “
Semi-Analytical Solutions for the Transient Temperature Fields Induced by a Moving Heat Source in an Orthogonal Domain
,”
Int. J. Therm. Sci.
,
123
, pp.
140
150
.
24.
Johansson
,
B. T.
, and
Lesnic
,
D.
,
2008
, “
A Method of Fundamental Solutions for Transient Heat Conduction
,”
Eng. Anal. Boundary Elem.
,
32
(9), pp.
697
703
.
25.
Dong
,
C. F.
,
2009
, “
An Extended Method of Time-Dependent Fundamental Solutions for Inhomogeneous Heat Equation
,”
Eng. Anal. Boundary Elem.
,
33
(5), pp.
717
725
.
26.
Yan
,
L.
,
Yang
,
F.
, and
Fu
,
C.
,
2009
, “
A Meshless Method for Solving an Inverse Spanwise-Dependent Heat Source Problem
,”
J. Comput. Phys.
,
228
(1), pp.
123
136
.
27.
Axelsson
,
O.
,
Glushdov
,
E.
, and
Glushkova
,
N.
,
2009
, “
The Local Greens Function Method in Singularly Perturbed Convection-Diffusion Problems
,”
Math. Comp.
,
78
, pp.
153
170
.
28.
Mandaliya
,
D. D.
,
Moharir
,
A. S.
, and
Gudi
,
R. D.
,
2013
, “
An Improved Greens Function Method for Isothermal Effectiveness Factor Determination in One- and Two-Dimensional Catalyst Geometries
,”
Chem. Eng. Sci.
,
91
, pp.
197
211
.
29.
Lugo-Mendez
,
H. D.
,
Valdes-Parada
,
F. J.
,
Porter
, M. L.
,
Wood, B. D.
, and
Ochoa-Tapia, J. A.
,
2015
, “
Upscaling Diffusion and Nonlinear Reactive Mass Transport in Homogeneous Porous Media
,”
Transp. Porous Med.
,
107
(3), pp.
683
716
.
30.
Cole
,
K. D.
,
Beck
,
J. V.
,
Woodbury
,
K. A.
, and
de Monte
,
F.
,
2014
, “
Intrinsic Verification and a Heat Conduction Database
,”
Int. J. Therm. Sci.
,
78
, pp.
36
47
.
31.
Demirel
,
Y.
,
2006
, “
Non-Isothermal Reaction-Diffusion System With Thermodynamically Coupled Heat and Mass Transfer
,”
Chem. Eng. Sci.
,
61
(10), pp.
3379
3385
.
32.
Cole
,
K. D.
,
de Monte
,
F.
,
McMasters
,
R. L.
,
Woodbury, K. A.
,
Haji-Sheikh, A.
, and
Beck, J. V.
,
2016
, “
Steady Heat Conduction in Slab Bodies With Generalized Boundary Conditions
,”
International Mechanical Engineering Congress and Exposition
, Phoenix, AZ, Nov. 13–16, Paper No. IMECE2016-66605.
33.
Cole
,
K. D.
,
Beck
,
J. V.
,
Haji-Shiekh
,
A.
, and
Litkouhi, B.
,
2011
,
Heat Conduction Using Green's Functions
,
CRC Press
,
Boca Rotan, FL
.
34.
Patankar
,
S. V.
,
1980
,
Numerical Heat and Fluid Flow
,
McGraw-Hill
,
New York
, Chap. 4.
35.
University of Nebraska–Lincoln, 2017, “EXACT Analytical Conduction Toolbox,” University of Nebraska, Lincoln, NE, accessed July 28, 2017, http://exact.unl.edu
36.
University of Nebraska–Lincoln, 2017, “Green's Function Library,” University of Nebraska, Lincoln, NE, accessed July 28, 2017, http://greensfunction.unl.edu
37.
Haji-Sheikh
,
A.
, and
Beck
,
J. V.
,
1990
, “
Greens Function Partitioning in Galerkin-Based Integral Solution of the Diffusion Equation
,”
ASME J. Heat Transfer
,
112
(1), pp.
28
34
.
You do not currently have access to this content.