We focus on the entropy generation minimization for the flow of a viscoelastic fluid through a parallel plate microchannel under the combined influences of applied pressure gradient, interfacial slip, and conjugate heat transfer. We use the simplified Phan–Thien–Tanner model (s-PTT) to represent the rheological behavior of the viscoelastic fluid. Using thermal boundary conditions of the third kind, we solve the transport equations analytically to obtain the velocity and temperature distributions in the flow field, which are further used to calculate the entropy generation rate in the analysis. In this study, the influential role of the following dimensionless parameters on entropy generation rate is examined: the viscoelastic parameter (εDe2), slip coefficient (k¯), channel wall thickness (δ), thermal conductivity of the wall (γ), Biot number (Bi) and Peclet number (Pe). We show that there exists a particular value of the abovementioned parameters that lead to a minimum entropy generation rate in the system. We believe the results of this analysis could be of helpful in the optimum design of microfluidic system/devices typically used in thermal management, such as micro-electronic devices, microreactors, and microheat exchangers.

References

References
1.
Brochard
,
F.
, and
De Gennes
,
P. G.
,
1992
, “
Shear-Dependent Slippage at a Polymer/Solid Interface
,”
Langmuir
,
8
(
12
), pp.
3033
3037
.
2.
Inn
,
Y.
, and
Wang
,
S.-Q.
,
1996
, “
Hydrodynamic Slip: Polymer Adsorption and Desorption at Melt/Solid Interfaces
,”
Phys. Rev. Lett.
,
76
(
3
), pp.
467
470
.
3.
Schowalter
,
W. R.
,
1988
, “
The Behavior of Complex Fluids at Solid Boundaries
,”
J. Non-Newtonian Fluid Mech.
,
29
, pp.
25
36
.
4.
Migler
,
K. B.
,
Hervet
,
H.
, and
Leger
,
L.
,
1993
, “
Slip Transition of a Polymer Melt Under Shear Stress
,”
Phys. Rev. Lett.
,
70
(
3
), pp.
287
290
.
5.
Degré
,
G.
,
Joseph
,
P.
,
Tabeling
,
P.
,
Lerouge
,
S.
,
Cloitre
,
M.
, and
Ajdari
,
A.
,
2006
, “
Rheology of Complex Fluids by Particle Image Velocimetry in Microchannels
,”
Appl. Phys. Lett.
,
89
(
2
), p. 024104.
6.
Navier
,
C. L. M. H.
,
1827
, “
Memoire Sur Les Lois Du Mouvement Des Fluids
,”
Mem. Acad. R. Sci.
,
6
, pp.
389
440
.
7.
Hatzikiriakos
,
S. G.
,
1993
, “
A Slip Model for Linear Polymers Based on Adhesive Failure
,”
Int. Polym. Process.
,
8
(
2
), pp.
135
142
.
8.
Ferrás
,
L. L.
,
Nóbrega
,
J. M.
, and
Pinho
,
F. T.
,
2012
, “
Analytical Solutions for Channel Flows of Phan-Thien-Tanner and Giesekus Fluids Under Slip
,”
J. Non-Newtonian Fluid Mech.
,
171–172
, pp.
97
105
.
9.
Tretheway
,
D. C.
, and
Meinhart
,
C. D.
,
2002
, “
Apparent Fluid Slip at Hydrophobic Microchannel Walls
,”
Phys. Fluids
,
14
(
3
), p. L9.
10.
Ibáñez
,
G.
,
López
,
A.
,
Pantoja
,
J.
,
Moreira
,
J.
, and
Reyes
,
J. A.
,
2013
, “
Optimum Slip Flow Based on the Minimization of Entropy Generation in Parallel Plate Microchannels
,”
Energy
,
50
(
1
), pp.
143
149
.
11.
Thien
,
N. P.
, and
Tanner
,
R. I.
,
1977
, “
A New Constitutive Equation Derived From Network Theory
,”
J. Non-Newtonian Fluid Mech.
,
2
(
4
), pp.
353
365
.
12.
Phan-Thien
,
N.
,
1978
, “
A Nonlinear Network Viscoelastic Model
,”
J. Rheol.
,
22
(
3
), pp.
259
283
.
13.
Oliveira
,
P. J.
, and
Pinho
,
F. T.
,
1999
, “
Analytical Solution for Fully Developed Channel and Pipe Flow of Phan-Thien–Tanner Fluids
,”
J. Fluid Mech.
,
387
, pp.
271
280
.
14.
Afonso
,
A. M.
,
Alves
,
M. A.
, and
Pinho
,
F. T.
,
2009
, “
Analytical Solution of Mixed Electro-Osmotic/Pressure Driven Flows of Viscoelastic Fluids in Microchannels
,”
J. Non-Newtonian Fluid Mech.
,
159
(
1–3
), pp.
50
63
.
15.
Afonso
,
A. M.
,
Ferrás
,
L. L.
,
Nóbrega
,
J. M.
,
Alves
,
M. A.
, and
Pinho
,
F. T.
,
2014
, “
Pressure-Driven Electrokinetic Slip Flows of Viscoelastic Fluids in Hydrophobic Microchannels
,”
Microfluid. Nanofluid.
,
16
(
6
), pp.
1131
1142
.
16.
Hashemabadi
,
S. H.
,
Etemad
,
S. G.
,
Thibault
,
J.
, and
Golkar Naranji
,
M. R.
,
2003
, “
Analytical Solution for Dynamic Pressurization of Viscoelastic Fluids
,”
Int. J. Heat Fluid Flow
,
24
(
1
), pp.
137
144
.
17.
Ferrás
,
L. L.
,
Afonso
,
A. M.
,
Alves
,
M. A.
,
Nóbrega
,
J. M.
, and
Pinho
,
F. T.
,
2016
, “
Electro-Osmotic and Pressure-Driven Flow of Viscoelastic Fluids in Microchannels: Analytical and Semi-Analytical Solutions
,”
Phys. Fluids
,
28
(
9
), p. 093102.
18.
Bejan
,
A.
,
1996
,
Entropy-Generation Minimization
,
CRC Press
,
New York
.
19.
Bejan
,
A.
,
1994
,
Entropy Generation Through Heat and Fluid Flow
,
Wiley
,
New York
.
20.
Mahmud
,
S.
, and
Andrew Fraser
,
R.
,
2005
, “
Flow, Thermal, and Entropy Generation Characteristics Inside a Porous Channel With Viscous Dissipation
,”
Int. J. Therm. Sci.
,
44
(
1
), pp.
21
32
.
21.
Escandón
,
J.
,
Bautista
,
O.
, and
Méndez
,
F.
,
2013
, “
Entropy Generation in Purely Electroosmotic Flows of Non-Newtonian Fluids in a Microchannel
,”
Energy
,
55
, pp.
486
496
.
22.
Goswami
,
P.
,
Mondal
,
P. K.
,
Datta
,
A.
, and
Chakraborty
,
S.
,
2016
, “
Entropy Generation Minimization in an Electroosmotic Flow of Non-Newtonian Fluid: Effect of Conjugate Heat Transfer
,”
ASME J. Heat Transfer
,
138
(
5
), p.
051704
.
23.
Ibáñez
,
G.
, and
Cuevas
,
S.
,
2010
, “
Entropy Generation Minimization of a MHD (Magnetohydrodynamic) Flow in a Microchannel
,”
Energy
,
35
(
10
), pp.
4149
4155
.
24.
Ibáñez
,
G.
,
López
,
A.
, and
Cuevas
,
S.
,
2012
, “
Optimum Wall Thickness Ratio Based on the Minimization of Entropy Generation in a Viscous Flow Between Parallel Plates
,”
Int. Commun. Heat Mass Transfer
,
39
(
5
), pp.
587
592
.
25.
Mondal
,
P. K.
, and
Dholey
,
S.
,
2015
, “
Effect of Conjugate Heat Transfer on the Irreversibility Generation Rate in a Combined Couette–Poiseuille Flow Between Asymmetrically Heated Parallel Plates: The Entropy Minimization Analysis
,”
Energy
,
83
, pp.
55
64
.
26.
Avci
,
M.
,
Aydin
,
O.
, and
Emin Arici
,
M.
,
2012
, “
Conjugate Heat Transfer With Viscous Dissipation in a Microtube
,”
Int. J. Heat Mass Transfer
,
55
(
19–20
), pp.
5302
5308
.
27.
Hettiarachchi
,
H. D. M.
,
Golubovic
,
M.
,
Worek
,
W. M.
, and
Minkowycz
,
W. J.
,
2008
, “
Slip-Flow and Conjugate Heat Transfer in Rectangular Microchannels
,”
ASME
Paper No. HT2008-56233.
28.
Barletta
,
A.
,
di Schio
,
E. R.
,
Comini
,
G.
, and
D'Agaro
,
P.
,
2008
, “
Conjugate Forced Convection Heat Transfer in a Plane Channel: Longitudinally Periodic Regime
,”
Int. J. Therm. Sci.
,
47
(
1
), pp.
43
51
.
29.
Saeid
,
N. H.
,
2007
, “
Conjugate Natural Convection in a Vertical Porous Layer Sandwiched by Finite Thickness Walls
,”
Int. Commun. Heat Mass Transfer
,
34
(
2
), pp.
210
216
.
30.
Bautista
,
O.
,
Sánchez
,
S.
,
Arcos
,
J. C.
, and
Méndez
,
F.
,
2013
, “
Lubrication Theory for Electro-Osmotic Flow in a Slit Microchannel With the Phan-Thien and Tanner Model
,”
J. Fluid Mech.
,
722
, pp.
496
532
.
31.
Sánchez
,
S.
,
Méndez
,
F.
,
Martínez-Suástegui
,
L.
, and
Bautista
,
O.
,
2012
, “
Asymptotic Analysis for the Conjugate Heat Transfer Problem in an Electro-Osmotic Flow With Temperature-Dependent Properties in a Capillary
,”
Int. J. Heat Mass Transfer
,
55
(
25–26
), pp.
8163
8171
.
32.
Gaikwad, H. S.
,
Basu, D. N.
, and
Mondal, P. K.
, 2016, “
Non-Linear Drag Induced Irreversibility Minimization in a Viscous Dissipative Flow Through a Micro-Porous Channel
,”
Energy
,
119
, pp. 588–600.
33.
Sarma
,
R.
,
Gaikwad
,
H.
, and
Mondal
,
P. K.
,
2017
, “
Effect of Conjugate Heat Transfer on Entropy Generation in Slip-Driven Microflow of Power Law Fluids
,”
Nanoscale Microscale Thermophys. Eng.
,
21
(
1
), pp.
26
44
.
34.
Coelho
,
P.
,
Pinho
,
F.
, and
Oliveira
,
P.
,
2002
, “
Fully Developed Forced Convection of the Phan–Thien–Tanner Fluid in Ducts With a Constant Wall Temperature
,”
Int. J. Heat Mass Transfer
,
45
(
7
), pp.
1413
1423
.
35.
Thompson
,
P. A.
, and
Troian
,
S. M.
,
1997
, “
A General Boundary Condition for Liquid Flow at Solid Surfaces
,”
Nature
,
389
, pp.
360
362
.
36.
Leal
,
L. G.
,
2007
,
Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes
,
Cambridge University Press
, New York.
37.
Snyder
,
W. T.
,
1964
, “
The Influence of Wall Conductance on Magnetohydrodynamic Channel-Flow Heat Transfer
,”
ASME J. Heat Transfer
,
86
(
4
), pp.
552
556
.
38.
Hwang
,
T. H.
,
Cai
,
Y.
, and
Cheng
,
P.
,
1992
, “
An Experimental Study of Forced Convection in a Packed Channel With Asymmetric Heating
,”
Int. J. Heat Mass Transfer
,
35
(
11
), pp.
3029
3039
.
39.
Holman
,
J. P.
,
2009
,
Heat Transfer
,
10th ed.
, McGraw-Hill, New York.
40.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
,
1987
,
Dynamics of Polymeric Liquids
(Fluid Mechanics),
2nd ed.
, Vol.
1
, Wiley, Hoboken, NJ.
You do not currently have access to this content.