Electrowetting-induced microwater droplet detachment from hydrophobic surface has been studied numerically. The governing equations for transient microfluidic flow are solved by a finite volume scheme with a two-step projection method on a fixed computational domain. The free surface of the droplet is tracked by the volume-of-fluid method with the surface tension force determined by the continuum surface force (CSF) model. The static contact angle has been implemented using a wall-adhesion boundary condition at the solid–liquid interface, while the dynamic contact angle is computed assuming a fixed deflection from the static contact angle. The results of the numerical model have been validated with published experimental data and the physics of stretching, recoiling, and detachment of the droplet have been investigated. A parametric study has been performed in which the effects of droplet volume, voltage amplitude, and voltage pulse width have been examined.

References

References
1.
Enright
,
R.
,
Miljkovic
,
N.
,
Alvarado
,
J. L.
,
Kim
,
K.
, and
Rose
,
J. W.
,
2014
, “
Dropwise Condensation on Micro- and Nanostructured Surfaces
,”
Nanoscale Microscale Thermophys. Eng.
,
18
(3), pp.
223
250
.
2.
Mugele
,
F.
,
Baret
,
J.-C.
, and
Steinhauser
,
D.
,
2006
, “
Microfluidic Mixing Through Electrowetting-Induced Droplet Oscillations
,”
Appl. Phys. Lett.
,
88
(20), p.
204106
.
3.
Lee
,
S. J.
,
Lee
,
S.
, and
Kang
,
K. H.
,
2012
, “
Droplet Jumping by Electrowetting and Its Application to the Three-Dimensional Digital Microfluidics
,”
Appl. Phys. Lett.
,
100
(
8
), p.
081604
.
4.
Nelson
,
W. C.
, and
Kim
,
C. J.
,
2012
, “
Droplet Actuation by Electrowetting-on-Dielectrode (EWOD): A Review
,”
J. Adhes. Sci. Technol.
,
26
(
12–17
), pp.
1747
1771
.
5.
Mugele
,
F.
, and
Baret
,
J.-C.
,
2005
, “
Electrowetting: From Basics to Applications
,”
J. Phys.: Condens. Matter
,
17
(
28
), pp.
R705
R774
.
6.
Cavalli
,
A.
,
Preston
,
D. J.
,
Tio
,
E.
,
Martin
,
D. W.
,
Miljkovic
,
N.
,
Wang
,
E. N.
,
Blanchette
,
F.
, and
Bush
,
J. W. M.
,
2016
, “
Electrically Induced Drop Detachment and Ejection
,”
Phys. Fluids
,
28
(
2
), p.
022101
.
7.
Lee
,
S. J.
,
Hong
,
J.
,
Kang
,
K. H.
,
Kang
,
I. S.
, and
Lee
,
S. J.
,
2014
, “
Electrowetting-Induced Droplet Detachment From Hydrophobic Surfaces
,”
Langmuir
,
30
(7), pp.
1805
1811
.
8.
Raman
,
K. A.
,
Jaiman
,
R. K.
,
Lee
,
T.-S.
, and
Low
,
H.-T.
,
2016
, “
A Numerical Study on Electrowetting-Induced Jumping and Transport of Droplet
,”
Int. J. Heat Mass Transfer
,
99
, pp.
805
821
.
9.
Kershaw
,
D. S.
,
1978
, “
The Incomplete Cholesky-Conjugate Gradient Method for the Iterative Solution of Linear Equations
,”
J. Comput. Phys.
,
26
(1), pp.
43
65
.
10.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(1), pp.
201
225
.
11.
Youngs
,
D. L.
,
1982
, “
Time-Dependent Multi-Material Flow With Large Fluid Distortion
,”
Numerical Methods for Fluid Dynamics
,
Academic
,
New York
, pp.
273
285
.
12.
Rudman
,
M.
,
1997
, “
Volume-Tracking Methods for Interfacial Flow Calculations
,”
Int. J. Numer. Methods Fluids
,
24
(7), pp.
671
691
.
13.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C. A.
,
1992
, “
Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(2), pp.
335
354
.
14.
Tong
,
A. Y.
, and
Wang
,
Z.
,
2007
, “
Relaxation Dynamics of a Free Elongated Liquid Ligament
,”
Phys. Fluids
,
19
(9), p.
092101
.
15.
Islam
,
M. A.
,
2016
, “
Numerical Modeling of Capillary Driven Microfluidic Flow
,”
Ph.D. thesis
, The University of Texas at Arlington, Arlington, TX.
16.
Tong
,
A. Y.
, and
Wang
,
Z.
,
2007
, “
A Numerical Method for Capillarity-Dominant Free Surface Flows
,”
J. Comput. Phys.
,
221
(2), pp.
506
523
.
17.
Islam
,
M. A.
, and
Tong
,
A. Y.
,
2017
, “
A Numerical Study of Parallel-Plate and Open-Plate Droplet Transport in Electrowetting-on-Dielectrode (EWOD)
,”
Numer. Heat Transfer, Part A
,
71
(8), pp.
805
821
.
18.
Chow
,
T. S.
,
1998
, “
Wetting of Rough Surfaces
,”
J. Phys.: Condens. Matter
,
10
(27), pp.
L445–L451
.
19.
Kothe
,
D. B.
, and
Mjolsness
,
R. C.
,
1992
, “
RIPPLE: A New Model for Incompressible Flows With Free Surfaces
,”
AIAA J.
,
30
(11), pp.
2694
2700
.
20.
Senthilkumar
,
S.
,
Delaure
,
Y. M. C.
,
Murray
,
D. B.
, and
Donnelly
,
B.
,
2011
, “
The Effect of the VOF-CSF Static Contact Angle Boundary Condition on the Dynamics of Sliding and Bouncing Ellipsoidal Bubbles
,”
Int. J. Heat Fluid Flow
,
32
(5), pp.
964
972
.
21.
Yin
,
G.
, and
Tong
,
A. Y.
,
2015
, “
A Numerical Study of Droplet Splitting and Merging in a Parallel-Plate Electrowetting-on-Dielectric Device
,”
ASME J. Heat Transfer
,
137
(9), p.
091016
.
22.
Cho
,
S. K.
,
Moon
,
H.
, and
Kim
,
C.-J.
,
2003
, “
Creating, Transporting, Cutting and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits
,”
J. Microelectromech. Syst.
,
12
(
1
), pp.
70
80
.
23.
Gupta
,
R.
,
Sheth
,
D. M.
,
Boone
,
T. K.
,
Sevilla
,
A. B.
, and
Frechette
,
J.
,
2011
, “
Impact of Pinning of the Triple Contact Line on Electrowetting Performance
,”
Langmuir
,
27
(
24
), pp.
14923
14929
.
You do not currently have access to this content.