In this study, different nanofluids (NFs) were developed by mixing a molten salt mixture (60% NaNO3–40% KNO3) with 1.0 wt % of silica–alumina nanoparticles using different methods. These NFs can be used as thermal energy storage materials in concentrating solar plants with a reduction of storage material if the thermal properties of the base fluid are increased. New mixing procedures without sonication were introduced with the aim to avoid the sonication step and to allow the production of a greater amount of NF with a procedure potentially more suitable for large-scale productions. For this purpose, two mechanical mixers and a magnetic stirrer were used. Each NF was prepared in aqueous solution with a concentration of 100 g/l. The effect of different concentrations (300 g/l and 500 g/l) was also studied with the most effective mixer. Specific heat, melting temperature, and latent heat were measured by means of differential scanning calorimeter. Thermal conductivity and diffusivity in the solid state were also evaluated. The results show that the highest increase of the specific heat was obtained with 100 g/l both in solid (up to 31%) and in liquid phase (up to 14%) with the two mechanical mixers. The same NFs also showed higher amount of stored heat. An increase in thermal conductivity and diffusivity was also detected for high solution concentrations with a maximum of 25% and 47%, respectively. Scanning electron microscopy (SEM) and energy-dispersive X-ray analyses revealed that the grain size in the NFs is much smaller than in the salt mixture, especially for the NF showing the highest thermal properties increase, and a better nanoparticles distribution is achieved with the lowest concentration. NFs with enhanced thermal properties can be synthesized in a cost-effective form in high concentrated aqueous solutions by using mechanical mixers.

References

1.
IEA
,
2010
, “Concentrating Solar Power,” Organisation for Economic Co-operation and Development/International Energy Agency, Paris, France.
2.
IEA
,
2014
, “Technology Roadmap: Energy Storage,” Organisation for Economic Co-operation and Development/International Energy Agency, Paris, France.
3.
Hasnain
,
S. M.
,
1998
, “
Review on Sustainable Thermal Energy Storage Technologies—Part I: Heat Storage Materials and Techniques
,”
Energy Convers. Manage.
,
39
(
11
), pp.
1127
1138
.
4.
Gil
,
A.
,
Medrano
,
M.
,
Martorell
,
I.
,
Lazaro
,
A.
,
Dolado
,
P.
,
Zalba
,
B.
, and
Cabeza
,
L. F.
,
2010
, “
State of the Art on High Temperature Thermal Energy Storage for Power Generation—Part 1: Concepts, Materials and Modellization
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
31
55
.
5.
Sharma
,
A.
,
Tyagi
,
V. V.
,
Chen
,
C. R.
, and
Buddhi
,
D.
,
2009
, “
Review on Thermal Energy Storage With Phase Change Materials and Application
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
318
345
.
6.
Sharma
,
S. D.
, and
Sagara
,
K.
,
2005
, “
Latent Heat Storage Materials and Systems: A Review
,”
Int. J. Green Energy
,
2
(
1
), pp.
1
56
.
7.
Kenisarin
,
M. M.
,
2010
, “
High-Temperature Phase Change Materials for Thermal Energy Storage
,”
Renewable Sustainable Energy Rev.
,
14
(
3
), pp.
955
970
.
8.
Araki
,
N.
,
Matsuura
,
M.
,
Makino
,
A.
,
Hirata
,
T.
, and
Kato
,
Y.
,
1988
, “
Measurement of Thermo-Physical Properties of Molten-Salts-Mixture of Alkaline Carbonate Salts
,”
Int. J. Thermophys.
,
9
(
6
), pp.
1071
1080
.
9.
Tamme
,
R.
,
Bauer
,
T.
,
Buschle
,
J.
,
Laing
,
D.
,
Mueller-Steinhagen
,
H.
, and
Steinmann
,
W.-D.
,
2008
, “
Latent Heat Storage Above 120 °C for Applications in the Industrial Process Heat Sector and Solar Power Generation
,”
Int. J. Energy Res.
,
32
(
3
), pp.
264
271
.
10.
Zalba
,
B.
,
Marin
,
J. M.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
,
2003
, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
251
283
.
11.
Nelson
,
I. C.
,
Banerjee
,
D.
, and
Ponnappan
,
R.
,
2009
, “
Flow Loop Experiments Using Polyalphaolefin Nanofluids
,”
J. Thermophys. Heat Transfer
,
23
(
4
), pp.
752
761
.
12.
Zhou
,
L.
,
Wang
,
B.
,
Peng
,
X.
,
Du
,
X.
, and
Yang
,
Y.
,
2010
, “
On the Specific Heat Capacity of CuO Nanofluid
,”
Adv. Mech. Eng.
,
2
, p. 172085.
13.
Vajjha
,
R. S.
, and
Das
,
D. K.
,
2009
, “
Specific Heat Measurement of Three Nanofluids and Development of New Correlations
,”
ASME J. Heat Transfer
,
131
(
7
), p.
071601
.
14.
Shin
,
D.
, and
Banerjee
,
D.
,
2011
, “
Enhanced Specific Heat of Silica Nanofluid
,”
ASME J. Heat Transfer
,
133
(
2
), p.
024501
.
15.
Chieruzzi
,
M.
,
Miliozzi
,
A.
,
Torre
,
L.
, and
Kenny
,
J. M.
,
2016
, “
Nanofluids With Enhanced Heat Transfer Properties for Thermal Energy Storage
,”
Intelligent Nanomaterials
, 2nd ed.,
Y. K. M.
Ashutosh Tiwari
,
H.
Kobayashi
, and
Anthony P. F.
Turner
, eds.,
Wiley
, Hoboken, NJ, pp.
295
360
.
16.
Choi
,
S.
,
1995
,
Developments Applications of Non-Newtonian Flows
,
ASME
,
New York
.
17.
Shin
,
D.
, and
Banerjee
,
D.
,
2011
, “
Enhancement of Specific Heat Capacity of High-Temperature Silica-Nanofluids Synthesized in Alkali Chloride Salt Eutectics for Solar Thermal-Energy Storage Applications
,”
Int. J. Heat Mass Transfer
,
54
(
5–6
), pp.
1064
1070
.
18.
Tiznobaik
,
H.
, and
Shin
,
D.
,
2013
, “
Enhanced Specific Heat Capacity of High-Temperature Molten Salt-Based Nanofluids
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
542
548
.
19.
Dudda
,
B.
, and
Shin
,
D.
,
2013
, “
Effect of Nanoparticle Dispersion on Specific Heat Capacity of a Binary Nitrate Salt Eutectic for Concentrated Solar Power Applications
,”
Int. J. Therm. Sci.
,
69
, pp.
37
42
.
20.
Shin
,
D.
, and
Banerjee
,
D.
,
2014
, “
Specific Heat of Nanofluids Synthesized by Dispersing Alumina Nanoparticles in Alkali Salt Eutectic
,”
Int. J. Heat Mass Transfer
,
74
, pp.
210
214
.
21.
Chieruzzi
,
M.
,
Miliozzi
,
A.
,
Crescenzi
,
T.
,
Torre
,
L.
, and
Kenny
,
J. M.
,
2015
, “
A New Phase Change Material Based on Potassium Nitrate With Silica and Alumina Nanoparticles for Thermal Energy Storage
,”
Nanoscale Res. Lett.
,
10
(
1
), p.
984
.
22.
Ho
,
M. X.
, and
Pan
,
C.
,
2014
, “
Optimal Concentration of Alumina Nanoparticles in Molten Hitec Salt to Maximize Its Specific Heat Capacity
,”
Int. J. Heat Mass Transfer
,
70
, pp.
174
184
.
23.
Jo
,
B.
, and
Banerjee
,
D.
,
2014
, “
Enhanced Specific Heat Capacity of Molten Salt-Based Nanomaterials: Effects of Nanoparticle Dispersion and Solvent Material
,”
Acta Mater.
,
75
, pp.
80
91
.
24.
Chieruzzi
,
M.
,
Cerritelli
,
G. F.
,
Miliozzi
,
A.
, and
Kenny
,
J. M.
,
2013
, “
Effect of Nanoparticles on Heat Capacity of Nanofluids Based on Molten Salts as PCM for Thermal Energy Storage
,”
Nanoscale Res. Lett.
,
8
(
1
), p.
448
.
25.
Andreu-Cabedo
,
P.
,
Mondragon
,
R.
,
Hernandez
,
L.
,
Martinez-Cuenca
,
R.
,
Cabedo
,
L.
, and
Enrique Julia
,
J.
,
2014
, “
Increment of Specific Heat Capacity of Solar Salt With SiO2 Nanoparticles
,”
Nanoscale Res. Lett.
,
9
, p.
582
.
26.
Schuller
,
M.
,
Shao
,
Q.
, and
Lalk
,
T.
,
2015
, “
Experimental Investigation of the Specific Heat of a Nitrate-Alumina Nanofluid for Solar Thermal Energy Storage Systems
,”
Int. J. Therm. Sci.
,
91
, pp.
142
145
.
27.
Paul
,
G.
,
Philip
,
J.
,
Raj
,
B.
,
Das
,
P. K.
, and
Manna
,
I.
,
2011
, “
Synthesis, Characterization, and Thermal Property Measurement of Nano-Al95Zn05 Dispersed Nanofluid Prepared by a Two-Step Process
,”
Int. J. Heat Mass Transfer
,
54
(
15–16
), pp.
3783
3788
.
28.
Zavoico
,
A. B.
,
2001
, “
Solar Power Tower Design Basic Document
,”
Sandia National Labs
,
Albuquerque, NM
, Report No.
SAND2001-2100
.https://www.osti.gov/scitech/biblio/786629
29.
Fernandes
,
D.
,
Pitie
,
F.
,
Caceres
,
G.
, and
Baeyens
,
J.
,
2012
, “
Thermal Energy Storage: ‘How Previous Findings Determine Current Research Priorities’
,”
Energy
,
39
(
1
), pp.
246
257
.
30.
Li
,
D.
, and
Kaner
,
R. B.
,
2006
, “
Shape and Aggregation Control of Nanoparticles: Not Shaken, Not Stirred
,”
J. Am. Chem. Soc.
,
128
(
3
), pp.
968
975
.
31.
Tantra
,
R.
,
2016
,
Nanomaterial Characterization: An Introduction
,
Wiley
,
Hoboken, NJ
.
32.
Xuan
,
Y. M.
,
Li
,
Q.
, and
Hu
,
W. F.
,
2003
, “
Aggregation Structure and Thermal Conductivity of Nanofluids
,”
AIChE J.
,
49
(
4
), pp.
1038
1043
.
33.
Zhu
,
H.
,
Zhang
,
C.
,
Liu
,
S.
,
Tang
,
Y.
, and
Yin
,
Y.
,
2006
, “
Effects of Nanoparticle Clustering and Alignment on Thermal Conductivities of Fe3O4 Aqueous Nanofluids
,”
Appl. Phys. Lett.
,
89
(
2
), p.
023123
.
34.
Evans
,
W.
,
Prasher
,
R.
,
Fish
,
J.
,
Meakin
,
P.
,
Phelan
,
P.
, and
Keblinski
,
P.
,
2008
, “
Effect of Aggregation and Interfacial Thermal Resistance on Thermal Conductivity of Nanocomposites and Colloidal Nanofluids
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1431
1438
.
35.
Lu
,
M.
, and
Huang
,
C.
,
2013
, “
Specific Heat Capacity of Molten Salt-Based Alumina Nanofluid
,”
Nanoscale Res. Lett.
,
8
(
1
), p.
292
.
36.
Lasfargues
,
M.
,
Geng
,
Q.
,
Cao
,
H.
, and
Ding
,
Y.
,
2015
, “
Mechanical Dispersion of Nanoparticles and Its Effect on the Specific Heat Capacity of Impure Binary Nitrate Salt Mixtures
,”
Nanomaterials
,
5
(
3
), pp.
1136
1146
.
37.
Chieruzzi
,
M.
,
Cerritelli
,
G. F.
,
Miliozzi
,
A.
,
Kenny
,
J. M.
, and
Torre
,
L.
,
2017
, “
Heat Capacity of Nanofluids for Solar Energy Storage Produced by Dispersing Oxide Nanoparticles in Nitrate Salt Mixture Directly at High Temperature
,”
Sol. Energy Mater. Sol. Cells
,
167
, pp.
60
69
.
38.
Pfleger
,
N.
,
Bauer
,
T.
,
Martin
,
C.
,
Eck
,
M.
, and
Worner
,
A.
,
2015
, “
Thermal Energy Storage: Overview and Specific Insight Into Nitrate Salts for Sensible and Latent Heat Storage
,”
Beilstein J. Nanotechnol.
,
6
, pp.
1487
1497
.
39.
Ameen
,
M. M.
,
Prabhul
,
K.
,
Sivakumar
,
G.
,
Abraham
,
P. P.
,
Jayadeep
,
U. B.
, and
Sobhan
,
C. B.
,
2010
, “
Molecular Dynamics Modeling of Latent Heat Enhancement in Nanofluids
,”
Int. J. Thermophys.
,
31
(
6
), pp.
1131
1144
.
You do not currently have access to this content.