In published literature, only very limited studies were carried out for low-temperature biogas upgrading for CO2/CH4 mixture separation due to the freeze-out of CO2 under low temperature, which causes several operational problems. Therefore, the present study aims to provide in-depth analysis for a low-temperature distillation process of a typical model of biogas mixture (CH4 + CO2) to tackle the problem of freezing. The process has been optimized by means of varying distillation column feed pressure, temperature and CO2 concentration, reflux ratio, feed stage number, and produced methane purity to lower the risk of CO2 freezing in the column. The modeling results reveal a substantial feature of the low-temperature process that it can capture CO2 in liquid phase with a purity of 99.5 mol % as a valuable byproduct for transport. Additionally, it is found that increasing the column reflux ratio mitigates the risk of CO2 freeze-out allowing the column to reach higher CH4 purities (up to 97 mol %) without CO2 solidification. Moreover, the occurrence of CO2 freeze-out in the column is not affected within a relatively wide range of feed CO2 concentrations. The low-temperature technique can serve as a new promising approach for biogas upgrading overcoming the risk of CO2 frosting.

References

References
1.
Appels
,
L.
,
Baeyens
,
J.
,
Degrève
,
J.
, and
Dewil
,
R.
,
2008
, “
Principles and Potential of the Anaerobic Digestion of Waste-Activated Sludge
,”
Prog. Energy Combust.
,
34
(
6
), pp.
755
781
.
2.
Arca
,
S.
,
Poletti
,
L.
,
Poletti
,
R.
, and
D'Alessandro
,
E.
,
2011
, “
Upgrading of Biogas Technology Through the Application of Gas Hydrates
,”
Seventh International Conference on Gas Hydrates
(ICGH), Edinburgh, UK, July 17–21, pp. 640–649.
3.
Pösch
,
M.
,
Ward
,
S.
, and
Owende
,
P.
,
2010
, “
Evaluation of Energy Efficiency of Various Biogas Production and Utilization Pathways
,”
Appl. Energy
,
87
(
11
), pp.
3305
3321
.
4.
Chen
,
S. Q.
, and
Chen
,
B.
,
2014
, “
Energy Efficiency and Sustainability of Complex Biogas Systems: A 3-Level Energetic Evaluation
,”
Appl. Energy
,
115
, pp.
151
163
.
5.
Petersson
,
A.
, and
Wellinger
,
A.
,
2009
, “
Biogas Upgrading Technologies–Developments and Innovations
,” IEA Bioenergy, Malmö, Sweden.
6.
Sun
,
Q.
,
Li
,
H. L.
,
Yan
,
J. Y.
,
Liu
,
L. C.
,
Yu
,
Z. X.
, and
Yu
,
X. H.
,
2015
, “
Selection of Appropriate Biogas Upgrading Technology—A Review of Biogas Cleaning, Upgrading and Utilization
,”
Renewable Sustainable Energy Rev.
,
51
, pp.
521
532
.
7.
Ricaurte
,
M.
,
Dicharry
,
C.
,
Broseta
,
D.
,
Renaud
,
X.
, and
Torre
,
J. P.
,
2013
, “
CO2 Removal From a CO2–CH4 Gas Mixture by Clathrate Hydrate Formation Using THF and SDS as Water-Soluble Hydrate Promoters
,”
Ind. Eng. Chem. Res.
,
52
(
2
), pp.
899
910
.
8.
Luo
,
G.
,
Wang
,
W.
, and
Angelidaki
,
I.
,
2014
, “
A New Degassing Membrane Coupled Upflow Anaerobic Sludge Blanket (UASB) Reactor to Achieve In-Situ Biogas Upgrading and Recovery of Dissolved CH4 From the Anaerobic Effluent
,”
Appl. Energy
,
132
, pp.
536
542
.
9.
Li
,
B. Y.
,
Duan
,
Y. H.
,
David
,
L.
, and
Bryan
,
M.
,
2013
, “
Advances in CO2 Capture Technology: A Patent Review
,”
Appl. Energy
,
102
, pp.
1439
1447
.
10.
Yang
,
H. Q.
,
Xu
,
Z. H.
,
Fan
,
M. H.
,
Rajender
,
G.
,
Slimane
,
R. B.
,
Bland
,
A. E.
, and
Wright, I.
,
2008
, “
Progress in Carbon Dioxide Separation and Capture: A Review
,”
J. Environ. Sci.
,
20
(
1
), pp.
14
27
.
11.
Niesner
,
J.
,
Jecha
,
D.
, and
Stehlík
,
P.
,
2013
, “
Biogas Upgrading Technologies: State of Art Review in European Region
,”
Chem. Eng. Trans.
,
35
, pp.
517
522
.
12.
Hullu
,
J. D.
,
Maassen
,
J. I. W.
,
Meel
,
P. A. V.
,
Shazad
,
S.
, and
Vaessen
,
J. M. P.
,
2008
, “
Comparing Different Biogas Upgrading Techniques
,” Eindhoven University of Technology, Eindhoven, The Netherlands,
Final Report
.https://www.scribd.com/document/46650259/Comparing-Different-Biogas-Upgrading-Techniques
13.
Tuinier
,
M. J.
,
van Sint Annaland
,
M.
, and
Kuipers
,
J. A. M.
,
2011
, “
A Novel Process for Cryogenic CO2 Capture Using Dynamically Operated Packed Beds—An Experimental and Numerical Study
,”
Int. J. Greenhouse Gas Control
,
5
(4), pp.
694
701
.
14.
Song
,
C. F.
,
Kitamura
,
Y.
,
Li
,
S. H.
, and
Ogasawara
,
K.
,
2012
, “
Design of a Cryogenic CO2 Capture System Based on Stirling Coolers
,”
Int. J. Greenhouse Gas Control
,
7
, pp.
107
114
.
15.
Chang
,
H. M.
,
Chung
,
M. J.
, and
Park
,
S. B.
,
2010
, “
Integrated Cryogenic System for CO2 Separation and LNG Production From Landfill Gas
,”
AIP Conf. Proc.
,
1218
(1), pp.
278
285
.
16.
Clodic
,
D.
, and
Younes
,
M.
,
2002
, “
A New Method for CO2 Capture: Frosting CO2 at Atmospheric Pressure
,”
Sixth International Conference on Greenhouse Gas Control Technologies
(
GHGT
), Kyoto, Japan, Oct. 1–4, pp.
155
160
.
17.
Zhang
,
N.
, and
Lior
,
N.
,
2006
, “
A Novel Near-Zero CO2 Emission Thermal Cycle With LNG Cryogenic Exergy Utilization
,”
Energy
,
31
(10–11), pp.
1666
1679
.
18.
Zhang
,
N.
, and
Lior
,
N.
,
2008
, “
Two Novel Oxy-Fuel Power Cycles Integrated With Natural Gas Reforming and CO2 Capture
,”
Energy
,
33
(
2
), pp.
340
351
.
19.
Zhang
,
N.
,
Lior
,
N.
,
Liu
,
M.
, and
Han
,
W.
,
2010
, “
COOLCEP (Cool Clean Efficient Power): A Novel CO2-Capturing Oxy-Fuel Power System With LNG (Liquefied Natural Gas) Coldness Energy Utilization
,”
Energy
,
35
(
2
), pp.
1200
1210
.
20.
Zanganeh
,
K. E.
,
Shafeen
,
A.
, and
Salvador
,
C.
,
2008
, “
CO2 Capture and Development of an Advanced Pilot-Scale Cryogenic Separation and Compression Unit
,”
Energy Procedia
,
1
(1), pp.
247
252
.
21.
Amann
,
J. M.
,
Kanniche
,
M.
, and
Bouallou
,
C.
,
2009
, “
Natural Gas Combined Cycle Power Plant Modified Into an O2/CO2 Cycle for CO2 Capture
,”
Energy Convers. Manage.
,
50
(
3
), pp.
510
521
.
22.
Hart
,
A.
, and
Gnanendran
,
N.
,
2009
, “
Cryogenic CO2 Capture in Natural Gas
,”
Energy Procedia
,
1
(
1
), pp.
697
706
.
23.
Tuinier
,
M. J.
,
Annaland
,
M. S.
,
Kramer
,
G. J.
, and
Kuipers
,
J. A. M.
,
2010
, “
Cryogenic CO2 Capture Using Dynamically Operated Packed Beds
,”
Chem. Eng. Sci.
,
65
(
1
), pp.
114
119
.
24.
Pikaar
,
M. J.
,
1959
, “
A Study of Phase Equilibrium in Hydrocarbon-CO2 Systems
,” Imperial College of Science and Technology, London.
25.
Agrawal
,
G. M.
, and
Laverman
,
R. J.
,
1995
, “
Phase Behavior of the Methane-Carbon Dioxide System in the Solid-Vapor Region
,”
Adv. Cryog. Eng.
,
19
, pp.
327
338
.
26.
Zhang
,
L. M.
,
Burgass
,
R.
,
Chapoy
,
A.
,
Tohidi
,
B.
, and
Solbraa
,
E.
,
2011
, “
Measurement and Modeling of CO2 Frost Points in the CO2-Methane Systems
,”
J. Chem. Eng. Data
,
56
(
6
), pp.
2971
2975
.
27.
Xiong
,
X.
,
Lin
,
W.
,
Jia
,
R.
,
Song
,
Y.
, and
Gu
,
A.
,
2015
, “
Measurement and Calculation of CO2 Frost Points in CH4 + CO2/CH4 + CO2 + N2/CH4 + CO2 + C2H6 Mixtures at Low Temperatures
,”
J. Chem. Eng. Data
,
60
(
11
), pp.
3077
3086
.
28.
Riva
,
M.
,
Campestrini
,
M.
,
Toubassy
,
J.
,
Clodic
,
D.
, and
Stringari
,
P.
,
2014
, “
Solid–Liquid–Vapor Equilibrium Models for Cryogenic Biogas Upgrading
,”
Ind. Eng. Chem. Res.
,
53
(
44
), pp.
17506
17514
.
29.
ZareNezhad
,
B.
, and
Eggeman
,
T.
,
2006
, “
Application of Peng–Rabinson Equation of State for CO2 Freezing Prediction of Hydrocarbon Mixtures at Cryogenic Conditions of Gas Plants
,”
Cryogenics
,
46
(
12
), pp.
840
845
.
30.
Yousef
,
A. M. I.
,
Eldrainy
,
Y. A.
,
El-Maghlany
,
W. M.
, and
Attia
,
A.
,
2016
, “
Upgrading Biogas by a Low-Temperature CO2 Removal Technique
,”
Alexandria Eng. J.
,
55
(
2
), pp.
1143
1150
.
31.
Li
,
H. Z.
,
2009
,
Oxygen Production Technologies
,
2nd ed.
,
Metallurgical Industry Press
,
Beijing, China
.
32.
Berstad
,
D.
,
Nekså
,
P.
, and
Anantharaman
,
R.
,
2012
, “
Low-Temperature CO2 Removal From Natural Gas
,”
Energy Procedia
,
26
, pp.
41
48
.
33.
Eggemann
,
T.
, and
Chafin
,
S.
,
2005
, “
Beware the Pitfalls of CO2 Freezing Prediction
,”
Chem. Eng. Prog.
,
101
(3), pp.
39
44
.http://www.rivercityeng.com/pdfzip/CEP_CO2FreezeReprint.pdf
You do not currently have access to this content.