The interstitial heat transfer coefficient (IHTC) is a key parameter in the two-energy equation model usually employed to investigate the thermal performance of high porosity open-cell metal foam/paraffin composite phase change material. Due to the existence of weak convection of liquid paraffin through metal foam during phase change process, the IHTC should be carefully determined for a low Reynolds number range (Re = 0–1), which however has been rarely addressed in the literature. In this paper, a direct simulation at foam pore scale is carried out to determine the IHTC between paraffin and metal foam at Re = 0–1. For this purpose, the cell structures reflecting realistic metal foams are first constructed based on the three-dimensional (3D) Weaire–Phelan foam cell to serve as the representative elementary volume (REV) of metal foam for direct simulation. Then, by solving the Navier–Stokes equations and energy equation for the REV, the influences of Reynolds number (Re), Prandtl number (Pr), foam porosity (ε), and pore density (PPI) on the dimensionless IHTC, i.e., the Nusselt number Nuv, are investigated. According to the numerical results, a correlation of Nuv at Re = 0–1 is proposed for metal foam/paraffin composite material, which covers both diffusion-dominated interstitial heat transfer region (Re ≤ 0.1) and convection-dominated interstitial heat transfer region (0.1 < Re ≤ 1). Finally, the applicability of this correlation in the two-energy equation model for solid–liquid phase change of paraffin in metal foam is validated by comparing the model predicted melting front with that of experimental observations made in this study. It is found that the IHTC correlation proposed in this study can be used in the two-energy equation model for well predicting the phase change process of paraffin in metal foam.

References

1.
Lafdi
,
K.
,
Mesalhy
,
O.
, and
Shaikh
,
S.
,
2007
, “
Experimental Study on the Influence of Foam Porosity and Pore Size on the Melting of Phase Change Materials
,”
J. Appl. Phys.
,
102
(
8
), p.
083549
.
2.
Siahpush
,
A.
,
O’Brien
,
J.
, and
Crepeau
,
J.
,
2008
, “
Phase Change Heat Transfer Enhancement Using Copper Porous Foam
,”
ASME J. Heat Transfer
,
130
(
8
), p.
082301
.
3.
Liu
,
Z.
,
Yao
,
Y.
, and
Wu
,
H.
,
2013
, “
Numerical Modeling for Solid–Liquid Phase Change Phenomena in Porous Media: Shell-and-Tube Type Latent Heat Thermal Energy Storage
,”
Appl. Energy
,
112
, pp.
1222
1232
.
4.
Nithyanandam
,
K.
, and
Pitchumani
,
R.
,
2014
, “
Computational Studies on Metal Foam and Heat Pipe Enhanced Latent Thermal Energy Storage
,”
ASME J. Heat Transfer
,
136
(
5
), p.
051503
.
5.
Allen
,
M. J.
,
Bergman
,
T. L.
,
Faghri
,
A.
, and
Sharifi
,
N.
,
2015
, “
Robust Heat Transfer Enhancement During Melting and Solidification of a Phase Change Material Using a Combined Heat Pipe-Metal Foam or Foil Configuration
,”
ASME J. Heat Transfer
,
137
(
10
), p.
102301
.
6.
Akeiber
,
H.
,
Nejat
,
P.
,
Majid
,
M. Z. A.
,
Wahid
,
M. A.
,
Jomehzadeh
,
F.
,
Famileh
,
I. Z.
,
Calautit
,
J. K.
,
Hughes
,
B. R.
, and
Zaki
,
S. A.
,
2016
, “
A Review on Phase Change Material (PCM) for Sustainable Passive Cooling in Building Envelopes
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
1470
1497
.
7.
Yao
,
Y.
,
Wu
,
H.
, and
Liu
,
Z.
,
2015
, “
A New Prediction Model for the Effective Thermal Conductivity of High Porosity Open-Cell Metal Foams
,”
Int. J. Therm. Sci.
,
97
, pp.
56
67
.
8.
Kaviany
,
M.
,
1991
,
Principles of Heat Transfer in Porous Media
,
Springer-Verlag
,
New York
.
9.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2005
, “
A Two-Temperature Model for Solid-Liquid Phase Change in Metal Foams
,”
ASME J. Heat Transfer
,
127
(
9
), pp.
995
1004
.
10.
Li
,
W. Q.
,
Qu
,
Z. G.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2012
, “
Experimental and Numerical Studies on Melting Phase Change Heat Transfer in Open-Cell Metallic Foams Filled With Paraffin
,”
Appl. Therm. Eng.
,
37
, pp.
1
9
.
11.
Nithyanandam
,
K.
, and
Pitchumani
,
R.
,
2013
, “
Design and Analysis of Metal Foam Enhanced Latent Thermal Energy Storage With Embedded Heat Pipes for Concentrating Solar Power Plants
,”
ASME
Paper No. ES2013-18211.
12.
Qu
,
Z. G.
,
Li
,
W. Q.
, and
Tao
,
W. Q.
,
2014
, “
Numerical Model of the Passive Thermal Management System for High-Power Lithium Ion Battery by Using Porous Metal Foam Saturated With Phase Change Material
,”
Int. J. Hydrogen Energy
,
39
(
8
), pp.
3904
3913
.
13.
Calmidi
,
V.
, and
Mahajan
,
R.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
557
565
.
14.
Hwang
,
J. J.
,
Hwang
,
G. J.
,
Yeh
,
R. H.
, and
Chao
,
C. H.
,
2001
, “
Measurement of Interstitial Convective Heat Transfer and Frictional Drag for Flow Across Metal Foams
,”
ASME J. Heat Transfer
,
124
(
1
), pp.
120
129
.
15.
Fuller
,
A. J.
,
Kim
,
T. Y.
,
Hodson
,
H. P.
, and
Lu
,
T. J.
,
2005
, “
Measurement and Interpretation of the Heat Transfer Coefficients of Metal Foams
,”
Proc. Inst. Mech. Eng., Part C
,
219
(
2
), pp.
183
191
.
16.
Kamiuto
,
K.
, and
Yee
,
S. S.
,
2005
, “
Heat Transfer Correlations for Open-Cellular Porous Materials
,”
Int. Commun. Heat Mass Transfer
,
32
(
7
), pp.
947
953
.
17.
Ranut
,
P.
,
Nobile
,
E.
, and
Mancini
,
L.
,
2014
, “
High Resolution Microtomography-Based CFD Simulation of Flow and Heat Transfer in Aluminum Metal Foams
,”
Appl. Therm. Eng.
,
69
(
1
), pp.
230
240
.
18.
Diani
,
A.
,
Bodla
,
K. K.
,
Rossetto
,
L.
, and
Garimella
,
S. V.
,
2015
, “
Numerical Investigation of Pressure Drop and Heat Transfer Through Reconstructed Metal Foams and Comparison Against Experiments
,”
Int. J. Heat Mass Transfer
,
88
, pp.
508
515
.
19.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2006
, “
Direct Simulation of Transport in Open-Cell Metal Foam
,”
ASME J. Heat Transfer
,
128
(
8
), pp.
793
799
.
20.
Hu
,
X.
,
Wan
,
H.
, and
Patnaik
,
S. S.
,
2015
, “
Numerical Modeling of Heat Transfer in Open-Cell Micro-Foam With Phase Change Material
,”
Int. J. Heat Mass Transfer
,
88
, pp.
617
626
.
21.
Kopanidis
,
A.
,
Theodorakakos
,
A.
,
Gavaises
,
E.
, and
Bouris
,
D.
,
2010
, “
3D Numerical Simulation of Flow and Conjugate Heat Transfer Through a Pore Scale Model of High Porosity Open Cell Metal Foam
,”
Int. J. Heat Mass Transfer
,
53
(
11
), pp.
2539
2550
.
22.
Tian
,
Y.
, and
Zhao
,
C. Y.
,
2011
, “
A Numerical Investigation of Heat Transfer in Phase Change Materials (PCMs) Embedded in Porous Metals
,”
Energy
,
36
(
9
), pp.
5539
5546
.
23.
Srivatsa
,
P.
,
Baby
,
R.
, and
Balaji
,
C.
,
2014
, “
Numerical Investigation of PCM Based Heat Sinks With Embedded Metal Foam/Crossed Plate Fins
,”
Numer. Heat Transfer, Part A
,
66
(
10
), pp.
1131
1153
.
24.
Feng
,
S.
,
Shi
,
M.
,
Li
,
Y.
, and
Lu
,
T. J.
,
2015
, “
Pore-Scale and Volume-Averaged Numerical Simulations of Melting Phase Change Heat Transfer in Finned Metal Foam
,”
Int. J. Heat Mass Transfer
,
90
, pp.
838
847
.
25.
Zukauskas
,
A. A.
,
1987
, “
Heat Transfer From Tubes in Crossflow
,”
Adv. Heat Transfer
,
18
, pp.
87
159
.
26.
Kathare
,
V.
,
Davidson
,
J. H.
, and
Kulacki
,
F. A.
,
2008
, “
Natural Convection in Water-Saturated Metal Foam
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
3794
3802
.
27.
Hetsroni
,
G.
,
Gurevich
,
M.
, and
Rozenblit
,
R.
,
2008
, “
Natural Convection in Metal Foam Strips With Internal Heat Generation
,”
Exp. Therm. Fluid Sci.
,
32
(
8
), pp.
1740
1747
.
28.
De
Schampheleire
,
S.
,
De
Jaeger
,
P.
,
De
Kerpel
,
K.
,
Ameel
,
B.
,
Huisseune
,
H.
, and
De
Paepe
,
M.
,
2014
, “
Experimental Study of Free Convection in Open-Cell Aluminum Foam
,”
Procedia Mater. Sci.
,
4
, pp.
359
364
.
29.
Bock
,
J.
, and
Jacobi
,
A. M.
,
2013
, “
Geometric Classification of Open-Cell Metal Foams Using X-Ray Micro-Computed Tomography
,”
Mater. Charact.
,
75
, pp.
35
43
.
30.
Banhart
,
J.
,
2006
, “
Metal Foams: Production and Stability
,”
Adv. Eng. Mater.
,
8
(
9
), pp.
781
794
.
31.
Phelan
,
R.
,
Weaire
,
D.
, and
Brakke
,
K. A.
,
1995
, “
Computation of Equilibrium Foam Structures Using the Surface Evolver
,”
Exp. Math.
,
4
(
3
), pp.
181
192
.
32.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Ventikos
,
Y.
,
2003
, “
Simulations of Flow Through Open Cell Metal Foams Using an Idealized Periodic Cell Structure
,”
Int. J. Heat Fluid Flow
,
24
(
6
), pp.
825
834
.
33.
Hosseinizadeh
,
S. F.
,
Darzi
,
A. A. R.
, and
Tan
,
F. L.
,
2012
, “
Numerical Investigations of Unconstrained Melting of Nano-Enhanced Phase Change Material (NEPCM) Inside a Spherical Container
,”
Int. J. Therm. Sci.
,
51
, pp.
77
83
.
34.
Queimada
,
A. J.
,
Quinones-Cisneros
,
S.
,
Marrucho
, I
. M.
,
Coutinho
,
J. A.
, and
Stenby
,
E. H.
,
2003
, “
Viscosity and Liquid Density of Asymmetric Hydrocarbon Mixtures
,”
Int. J. Thermophys.
,
24
(
5
), pp.
1221
1239
.
35.
Mózes
,
G.
, ed.,
1983
,
Paraffin Products
, Vol.
14
,
Elsevier
,
Amsterdam, The Netherlands
.
36.
Beskok
,
A.
, and
Karniadakis
,
G. E.
,
1994
, “
Simulation of Heat and Momentum Transfer in Complex Microgeometries
,”
J. Thermophys. Heat Transfer
,
8
(
4
), pp.
647
655
.
37.
Bahadori
,
A.
,
2011
, “
Estimation of Surface Tensions of Paraffin Hydrocarbons Using a Novel Predictive Tool Approach and Vandermonde Matrix
,”
Energy Fuels
,
26
(
9
), p.
6060
.
38.
Mills
,
N.
,
2007
, “
The High Strain Mechanical Response of the Wet Kelvin Model for Open-Cell Foams
,”
Int. J. Solids Struct.
,
44
(
1
), pp.
51
65
.
You do not currently have access to this content.