Liquid microjets are emerging as candidate primary or secondary heat exchangers for the thermal management of next generation photonic integrated circuits (PICs). However, the thermal and hydrodynamic behavior of confined, low Reynolds number liquid slot jets is not yet comprehensively understood. This investigation experimentally examined jet outlet modifications—in the form of tabs and chevrons—as techniques for passive control and enhancement of single-phase convective heat transfer. The investigation was carried out for slot jets in the laminar flow regime, with a Reynolds number range, based on the slot jet hydraulic diameter, of 100–500. A slot jet with an aspect ratio of 4 and a fixed confinement height to hydraulic diameter ratio (H/Dh) of 1 was considered. The local surface heat transfer and velocity field characteristics were measured using infrared (IR) thermography and particle image velocimetry (PIV) techniques. It was found that increases in area-averaged Nusselt number of up to 29% compared to the baseline case could be achieved without incurring additional hydrodynamic losses. It was also determined that the location and magnitude of Nusselt number and velocity peaks within the slot jet stagnation region could be passively controlled and enhanced through the application of outlet tabs of varying geometries and locations.

References

References
1.
Enright
,
R.
,
Lei
,
S.
,
Nolan
,
K.
,
Mathews
,
I.
,
Shen
,
A.
,
Levaufre
,
G.
,
Frizzell
,
R.
,
Duan
,
G.-H.
, and
Hernon
,
D.
,
2014
, “
A Vision for Thermally Integrated Photonics Systems
,”
Bell Labs Tech. J.
,
19
, pp.
31
45
.
2.
Jeffers
,
N.
,
Stafford
,
J.
,
Nolan
,
K.
,
Donnelly
,
B.
,
Enright
,
R.
,
Punch
,
J.
,
Waddell
,
A.
,
Ehrlich
,
L.
,
O'Connor
,
J.
,
Sexton
,
A.
,
Blythman
,
R.
, and
Hernon
,
D.
,
2014
, “
Microfluidic Cooling of Photonic Integrated Circuits (PICS)
,”
Fourth European Conference on Microfluidics
, Limerick, Ireland, Dec. 10–12, pp. 1–4.
3.
Gutmark
,
E.
, and
Grinstein
,
F.
,
1999
, “
Flow Control With Noncircular Jets 1
,”
Annu. Rev. Fluid Mech.
,
31
(
1
), pp.
239
272
.
4.
Chen
,
Y.
,
Ma
,
C.-F.
,
Qin
,
M.
, and
Li
,
Y.
,
2006
, “
Forced Convective Heat Transfer With Impinging Slot Jets of Meso-Scale
,”
Int. J. Heat Mass Transfer
,
49
(
1
), pp.
406
410
.
5.
Choo
,
K. S.
,
Youn
,
Y. J.
,
Kim
,
S. J.
, and
Lee
,
D. H.
,
2009
, “
Heat Transfer Characteristics of a Micro-Scale Impinging Slot Jet
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
3169
3175
.
6.
Zukowski
,
M.
,
2013
, “
Heat Transfer Performance of a Confined Single Slot Jet of Air Impinging on a Flat Surface
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
484
490
.
7.
Lin
,
Z.
,
Chou
,
Y.
, and
Hung
,
Y.
,
1997
, “
Heat Transfer Behaviors of a Confined Slot Jet Impingement
,”
Int. J. Heat Mass Transfer
,
40
(
5
), pp.
1095
1107
.
8.
Li
,
Q.
,
Xuan
,
Y.
, and
Yu
,
F.
,
2012
, “
Experimental Investigation of Submerged Single Jet Impingement Using Cu–Water Nanofluid
,”
Appl. Therm. Eng.
,
36
, pp.
426
433
.
9.
Yousefi
,
T.
,
Shojaeizadeh
,
E.
,
Mirbagheri
,
H.
,
Farahbaksh
,
B.
, and
Saghir
,
M.
,
2013
, “
An Experimental Investigation on the Impingement of a Planar Jet of Al2O3–Water Nanofluid on a V-Shaped Plate
,”
Exp. Therm. Fluid Sci.
,
50
, pp.
114
126
.
10.
Lee
,
J.
, and
Lee
,
S.-J.
,
2000
, “
The Effect of Nozzle Aspect Ratio on Stagnation Region Heat Transfer Characteristics of Elliptic Impinging Jet
,”
Int. J. Heat Mass Transfer
,
43
(
4
), pp.
555
575
.
11.
Whelan
,
B. P.
, and
Robinson
,
A. J.
,
2009
, “
Nozzle Geometry Effects in Liquid Jet Array Impingement
,”
Appl. Therm. Eng.
,
29
(
11
), pp.
2211
2221
.
12.
Brignoni
,
L. A.
, and
Garimella
,
S. V.
,
2000
, “
Effects of Nozzle-Inlet Chamfering on Pressure Drop and Heat Transfer in Confined Air Jet Impingement
,”
Int. J. Heat Mass Transfer
,
43
(
7
), pp.
1133
1139
.
13.
Lee
,
D. H.
,
Bae
,
J. R.
,
Park
,
H. J.
,
Lee
,
J. S.
, and
Ligrani
,
P.
,
2011
, “
Confined, Milliscale Unsteady Laminar Impinging Slot Jets and Surface Nusselt Numbers
,”
Int. J. Heat Mass Transfer
,
54
(
11
), pp.
2408
2418
.
14.
Lee
,
D. H.
,
Bae
,
J. R.
,
Ryu
,
M.
, and
Ligrani
,
P.
,
2012
, “
Confined, Milliscale Unsteady Laminar Impinging Slot Jets: Effects of Slot Width on Surface Stagnation Point Nusselt Numbers
,”
ASME J. Electron. Packag.
,
134
(
4
), p.
041004
.
15.
Reeder
,
M.
, and
Samimy
,
M.
,
1996
, “
The Evolution of a Jet With Vortex-Generating Tabs: Real-Time Visualization and Quantitative Measurements
,”
J. Fluid Mech.
,
311
, pp.
73
118
.
16.
Kataoka
,
K.
,
Suguro
,
M.
,
Degawa
,
H.
,
Maruo
,
K.
, and
Mihata
,
I.
,
1987
, “
The Effect of Surface Renewal Due to Largescale Eddies on Jet Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
30
(
3
), pp.
559
567
.
17.
Iwana
,
T.
,
Suenaga
,
K.
,
Shirai
,
K.
,
Kameya
,
Y.
,
Motosuke
,
M.
, and
Honami
,
S.
,
2015
, “
Heat Transfer and Fluid Flow Characteristics of Impinging Jet Using Combined Device With Triangular Tabs and Synthetic Jets
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
322
329
.
18.
Gao
,
N.
,
Sun
,
H.
, and
Ewing
,
D.
,
2003
, “
Heat Transfer to Impinging Round Jets With Triangular Tabs
,”
Int. J. Heat Mass Transfer
,
46
(
14
), pp.
2557
2569
.
19.
Hayashi
,
T.
,
Taki
,
J.
,
Nakanishi
,
Y.
,
Motosuke
,
M.
, and
Honami
,
S.
,
2009
, “
Experimental Study on Control of an Impinging Jet Heat Transfer Using Triangular Tabs
,”
J. Fluid Sci. Technol.
,
4
(
2
), pp.
292
303
.
20.
Zaman
,
K. B.
,
1993
, “
Streamwise Vorticity Generation and Mixing Enhancement in Free Jets by ‘Delta-Tabs'
,”
AIAA
Paper No. 93-3253.
21.
Samimy
,
M.
,
Reeder
,
M.
, and
Zaman
,
K.
,
1991
, “
Supersonic Jet Mixing Enhancement by Vortex Generators
,”
AIAA
Paper No. 91-2261-CP.
22.
Zaman
,
K.
,
1999
, “
Spreading Characteristics of Compressible Jets From Nozzles of Various Geometries
,”
J. Fluid Mech.
,
383
, pp.
197
228
.
23.
Rahai
,
H.
,
2010
, “
Near-Field Characteristics of Wall Jets With Tabs
,” Ph.D. thesis, University of California, Irvine, CA.
24.
Violato
,
D.
,
Ianiro
,
A.
,
Cardone
,
G.
, and
Scarano
,
F.
,
2012
, “
Three-Dimensional Vortex Dynamics and Convective Heat Transfer in Circular and Chevron Impinging Jets
,”
Int. J. Heat Fluid Flow
,
37
, pp.
22
36
.
25.
Zaman
,
K.
,
Bridges
,
J.
, and
Huff
,
D.
,
2011
, “
Evolution From ‘Tabs' to ‘Chevron Technology’—A Review
,”
Int. J. Aeroacoustics
,
10
(
5–6
), pp.
685
710
.
26.
Anderson
,
S. L.
, and
Longmire
,
E. K.
,
1995
, “
Particle Motion in the Stagnation Zone of an Impinging Air Jet
,”
J. Fluid Mech.
,
299
, pp.
333
366
.
27.
Martin
,
J.
, and
Meiburg
,
E.
,
1994
, “
The Accumulation and Dispersion of Heavy Particles in Forced Two-Dimensional Mixing Layers. i. The Fundamental and Subharmonic Cases
,”
Phys. Fluids
,
6
(
3
), pp.
1116
1132
.
28.
Tropea
,
C.
,
Yarin
,
A. L.
, and
Foss
,
J. F.
,
2007
,
Springer Handbook of Experimental Fluid Mechanics
, Vol.
1
,
Springer Science and Business Media
,
New York
.
29.
Holman
,
J.
,
2009
,
Heat Transfer
,
McGraw-Hill Education
, New York.
30.
Lindgren
,
B.
, and
Johansson
,
A. V.
,
2002
, “
Design and Evaluation of a Low-Speed Wind-Tunnel With Expanding Corners
,” Royal Institute of Technology, Stockholm, Sweden, Technical Report No.
TRITA-MEK
.
31.
Stafford
,
J.
,
Walsh
,
E.
, and
Egan
,
V.
,
2012
, “
A Statistical Analysis for Time-Averaged Turbulent and Fluctuating Flow Fields Using Particle Image Velocimetry
,”
Flow Meas. Instrum.
,
26
, pp.
1
9
.
32.
Jeffers
,
N. M. R.
,
2009
, “
On the Heat Transfer and Fluid Mechanics of a Normally-Impinging, Submerged and Confined Liquid Jet
,” Ph.D. thesis, University of Limerick, Limerick, Ireland.
33.
Sun
,
H.
,
Ma
,
C.
, and
Nakayama
,
W.
,
1993
, “
Local Characteristics of Convective Heat Transfer From Simulated Microelectronic Chips to Impinging Submerged Round Water Jets
,”
ASME J. Electron. Packag.
,
115
(
1
), pp.
71
77
.
34.
Garimella
,
S. V.
, and
Rice
,
R.
,
1995
, “
Confined and Submerged Liquid Jet Impingement Heat Transfer
,”
ASME J. Heat Transfer
,
117
(
4
), pp.
871
877
.
35.
Munson
,
B.
,
Young
,
D.
,
Okiishi
,
T.
, and
Huebsch
,
W.
,
2009
,
Fundamentals of Fluid Mechanics
,
Wiley
, Hoboken, NJ.
36.
Keane
,
R. D.
, and
Adrian
,
R. J.
,
1990
, “
Optimization of Particle Image Velocimeters. i. Double Pulsed Systems
,”
Meas. Sci. Technol.
,
1
(
11
), pp.
1202
1215
.
37.
TSI
,
2011
, “
Insight 4g-Tutorial Guide
,” TSI Inc., Shoreview, MN.
38.
Forliti
,
D.
,
Strykowski
,
P.
, and
Debatin
,
K.
,
2000
, “
Bias and Precision Errors of Digital Particle Image Velocimetry
,”
Exp. Fluids
,
28
(
5
), pp.
436
447
.
39.
Stafford
,
J.
,
Walsh
,
E.
, and
Egan
,
V.
,
2009
, “
Characterizing Convective Heat Transfer Using Infrared Thermography and the Heated-Thin-Foil Technique
,”
Meas. Sci. Technol.
,
20
(
10
), p.
105401
.
40.
Nogueira
,
E.
,
Pereira
,
J.
,
Baesso
,
M.
, and
Bento
,
A.
,
2003
, “
Study of Layered and Defective Amorphous Solids by Means of Thermal Wave Method
,”
J. Non-Cryst. Solids
,
318
(
3
), pp.
314
321
.
41.
Geers
,
L. F. G.
,
2004
, “
Multiple Impinging Jet Arrays. An Experimental Study on Flow and Heat Transfer
,”
Ph.D. thesis
, Delft University of Technology, Delft, The Netherlands.
42.
Lee
,
J.
, and
Lee
,
S.-J.
,
2000
, “
The Effect of Nozzle Configuration on Stagnation Region Heat Transfer Enhancement of Axisymmetric Jet Impingement
,”
Int. J. Heat Mass Transfer
,
43
(
18
), pp.
3497
3509
.
43.
Ashforth-Frost
,
S.
, and
Jambunathan
,
K.
,
1996
, “
Effect of Nozzle Geometry and Semi-Confinement on the Potential Core of a Turbulent Axisymmetric Free Jet
,”
Int. Commun. Heat Mass Transfer
,
23
(
2
), pp.
155
162
.
44.
Behnia
,
M.
,
Parneix
,
S.
,
Shabany
,
Y.
, and
Durbin
,
P.
,
1999
, “
Numerical Study of Turbulent Heat Transfer in Confined and Unconfined Impinging Jets
,”
Int. J. Heat Fluid Flow
,
20
(
1
), pp.
1
9
.
45.
Sezai
,
I.
, and
Mohamad
,
A.
,
1999
, “
Three-Dimensional Simulation of Laminar Rectangular Impinging Jets, Flow Structure, and Heat Transfer
,”
ASME J. Heat Transfer
,
121
(
1
), pp.
50
56
.
46.
Jeffers
,
N.
,
Stafford
,
J.
,
Conway
,
C.
,
Punch
,
J.
, and
Walsh
,
E.
,
2016
, “
The Influence of the Stagnation Zone on the Fluid Dynamics at the Nozzle Exit of a Confined and Submerged Impinging Jet
,”
Exp. Fluids
,
57
(
2
), pp.
1
15
.
47.
Fabbri
,
M.
,
Wetter
,
A.
,
Mayer
,
B.
,
Brunschwiler
,
T.
,
Michel
,
B.
,
Rothuizen
,
H.
,
Linderman
,
R.
, and
Kloter
,
U.
,
2006
, “
Microchip Cooling Module Based on FC72 Slot Jet Arrays Without Cross-Flow
,”
IEEE
22nd Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, Dallas, TX, Mar. 14–16, pp.
54
58
.
48.
Chen
,
N.
, and
Yu
,
H.
,
2014
, “
Mechanism of Axis Switching in Low Aspect-Ratio Rectangular Jets
,”
Comput. Math. Appl.
,
67
(
2
), pp.
437
444
.
You do not currently have access to this content.