Both experimental and numerical studies of a turbulent flow in a bifurcating channel are performed to characterize the dynamical behavior of the flow and its impact on the convective heat transfer on the sides of the branch. This configuration corresponds to the radial vents placed in the stator vertically to the rotor–stator air gap in the electrical machines. Indeed, our analysis focuses on the local convective heat transfer on the vents internal surface under a turbulent mass flow rate. The flow field measurements were carried out with two components particle image velocimetry (PIV) system, and the local heat transfer on the sides of the bifurcation branch was measured using an infrared thermography device. The convective heat transfer and the flow dynamics through the geometry are investigated numerically considering a three-dimensional (3D) flow. The closure system of the Navier–Stokes equations for steady and incompressible flow is based on the low-Reynolds numbers Reynolds stress model (RSM) (RSM-stress-ω). The comparison of the 3D computed results with the measurements in the xy symmetry plane is satisfactory in the vertical and horizontal channels. The numerical prediction of the secondary flow in the vertical branch was analyzed and complements the experimental results. It was particularly noticed that the accelerated flow observed at the right side of the branch's inlet allows more pronounced heat transfer comparatively to the left side. Beyond approximately 7 hydraulic diameters from the entrance of the branch, the Nusselt number curves on the two sides of the branch tend to be the same developed Nusselt number, Nud.

References

References
1.
Valenzuela
,
M. A.
, and
Tapia
,
J. A.
,
2008
, “
Heat Transfer and Thermal Design of Finned Frames for TEFC Variable-Speed Motors
,”
IEEE Trans. Ind. Electron.
,
55
(
10
), pp.
3500
3508
.
2.
Seghir-OualiI
,
S.
,
Harmand
,
S.
, and
Laloy
,
D.
,
2009
, “
Study of the Thermal Behavior of a Synchronous Motor With Permanent Magnets
,”
Int. J. Eng.
,
10
(
6
), pp.
455
476
.
3.
Hayes
,
R. E.
,
Nandakumar
,
K.
, and
Nasr-El-Din
,
H.
,
1989
, “
Steady Laminar Flow in a 90 Degree Planar Branch
,”
Comput. Fluids
,
17
(
4
), pp.
537
553
.
4.
Nearyt
,
V. S.
, and
Sotiropoulos
,
F.
,
1996
, “
Numerical Investigation of Laminar Flows Through 90-Degree Diversions of Rectangular Cross-Section
,”
Comput. Fluids
,
25
(
2
), pp.
95
118
.
5.
Hoagland
,
L. C.
,
1961
, “
Turbulent Flow in Straight Rectangular Ducts-Secondary Flow, Its Cause and Effect on the Primary Flow
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
6.
Demuren
,
A. O.
, and
Rodi
,
W.
,
1984
, “
Calculation of Turbulence-Driven Secondary Motion in Non-Circular Ducts
,”
J. Fluid Mech.
,
140
, pp.
189
222
.
7.
Liepsch
,
M. S.
,
Rastogi
,
A. K.
, and
Vlachos
,
N. S.
,
1982
, “
Measurement and Calculation of Laminar Flow in a Ninety Degree Bifurcation
,”
J. Biomech.
,
15
(
7
), pp.
473
485
.
8.
Khodadadi
,
J. M.
,
1991
, “
Wall Pressure and Shear Stress Variations in a 90-deg Bifurcation During Pulsatile Laminar Flow
,”
ASME J. Fluids Eng.
,
113
(
1
), pp.
111
115
.
9.
Travers
,
T. G.
, and
Worek
,
W. M.
,
1996
, “
Laminar Fluid Flow in a Planar 90° Bifurcation With and Without a Protruding Branching Duct
,”
ASME J. Fluids Eng.
,
118
(
1
), pp.
81
84
.
10.
Boizumault
,
F.
,
Harmand
,
S.
, and
Desmet
,
B.
,
1999
, “
Local Convective Heat Transfer Past the Junction of Channels of Rectangular Cross-Section
,”
Exp. Fluids
,
27
(
5
), pp.
400
407
.
11.
El-Shaboury
,
A. M. F.
,
Soliman
,
H. M.
, and
Ormiston
,
S. J.
,
2002
, “
Laminar Forced Convection in Two-Dimensional Equal-Sided and Reduced Branching Ducts
,”
Numer. Heat Transfer
,
42
(
5
), pp.
487
512
.
12.
El-Shaboury
,
A. M. F.
,
Soliman
,
H. M.
, and
Ormiston
,
S. J.
,
2003
, “
Performance Evaluation of Branch in Grand Impacting Tee Junctions for Laminar Forced-Convection Applications
,”
Int. J. Therm. Sci.
,
42
(
7
), pp.
713
723
.
13.
Hirota
,
M.
,
Asano
,
H.
,
Nakayama
,
H.
,
Asano
,
T.
, and
Hirayama
,
S.
,
2006
, “
Three Dimensional Structure of Turbulent Flow in Mixing T-Junction
,”
JSME Int. J. Ser. B
,
49
(
4
), pp.
1070
1077
.
14.
Ming
,
T.
, and
Zhao
,
J.
,
2012
, “
Large-Eddy Simulation of Thermal Fatigue in a Mixing Tee
,”
Int. J. Heat Fluid Flow
,
37
, pp.
93
108
.
15.
Naik-Nimbalkar
,
V.
,
Patwardhan
,
A.
,
Banjeree
,
I.
,
Padmakumar
,
G.
, and
Vaidyanathan
,
G.
,
2010
, “
Thermal Mixing in T-Junctions
,”
Chem. Eng. Sci.
,
65
(
22
), pp.
5901
5911
.
16.
Pollard
,
A.
,
1981
, “
Computer Modeling of Flow in Tee-Junctions
,”
Phys. Chem. Hydrodyn.
,
2
, pp.
203
227
.
17.
Khodadadi
,
J. M.
,
Nguyen
,
T. M.
, and
Vlachos
,
N. S.
,
1986
, “
Laminar Forced Convective Heat Transfer in a Two-Dimensional 90° Bifurcation
,”
Numer. Heat Transfer
,
9
(6), pp.
677
695
.
18.
Lakehal
,
A.
,
Nait Bouda
,
N.
, and
Harmand
,
S.
,
2013
, “
Etude Numérique d'un Écoulement Turbulent Dans une Jonction en T Avec Transfert de Chaleur
,” 21st French Congress of Mechanics (CFM'21), Bordeaux, France, Aug. 26–30.
19.
Lakehal
,
A.
, and
Nait Bouda
,
N.
,
2015
, “
Influence du Rapport d'aspect sur le Comportement Dynamique d'un Écoulement Turbulent Dans une Bifurcation en T
,”
Revue Algérienne de Physique
,
2
(
1
), pp. 38–44.
20.
Tikhonov
,
A. N.
,
1943
, “
Solution of Incorrectly Formulated Problems and the Regularization Method
,”
Dokl. Akad. Nauk SSSR
,
151
(
3
), pp.
501
504
.
21.
Tikhonov
,
N. A.
,
1963
, “
On the Stability of Inverse Problems
,”
Dokl. Akad. SSSR
,
39
(3), pp.
195
198
.
22.
Raffel
,
M.
,
Willert
,
C.
,
Wereley
,
S.
, and
Kompenhans
,
J.
,
2007
,
Particle Image Velocimetry: Apractical Guide
,
Springer
,
Berlin
.
23.
Westerweel
,
1994
, “
Efficient Detection of Spurious Vectors in Particle Image Velocimetry Data
,”
Exp. Fluids
,
16
(
3–4
), pp.
236
247
.
24.
Coleman
,
H.
, and
Steele
,
W.
,
1995
, “
Engineering Application of Experimental Uncertainty Analysis
,”
AIAA J.
,
33
(
10
), pp.
1888
1896
.
25.
Gui
,
L.
,
Longo
,
J.
, and
Stern
,
F.
,
2001
, “
Towing Tank PIV Measurement System, Data and Uncertainty Assessment for DTMB Model 5512
,”
Exp. Fluids
,
31
(
3
), pp.
336
346
.
26.
Murray
,
N.
, and
Ukeiley
,
L.
,
2007
, “
An Application of Gappy POD
,”
Exp. Fluids
,
42
(
1
), pp.
79
91
.
27.
Nguyen
,
T.
, and
Harmand
,
S.
,
2013
, “
Heat Transfer and Vertical Structures Around a Rotating Cylinder With a Spanwise Disk and Low-Velocity Crossflow
,”
Int. J. Heat Mass Transfer
,
64
, pp.
1014
1030
.
28.
Nguyen
,
T.
,
Pellé
,
J.
,
Harmand
,
S.
, and
Poncet
,
S.
,
2012
, “
PIV Measurements of an Air Jet Impinging on an Open Rotor-Stator System
,”
Exp. Fluids
,
53
(
2
), pp.
401
412
.
29.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
(
3
), pp.
537
566
.
30.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
(Series in Computational Methods in Mechanics and Thermal Sciences),
Hemisphere
,
New York
.
31.
Sabot
,
J.
, and
Comte-Bellot
,
G.
,
1976
, “
Intermittency of Coherent Structures in the Core Region of Fully Developed Turbulent Pipe Flow
,”
J. Fluid Mech.
,
74
(
4
), pp.
767
796
.
32.
Spalart
,
P.
,
1985
, “
Numerical Simulations of Boundary Layers Part 1—Weak Formulation and Numerical Method
,” National Aeronautics and Space Administration, Washington, DC, NASA Report No.
NASA TM 88220-88222
.
33.
Hinze
,
J. O.
,
1975
,
Turbulence
,
2nd ed.
,
McGraw-Hill
,
New York
, p.
621
.
34.
Ohji
,
M.
,
1967
, “
Statistical Theory of Wall Turbulence
,”
Phys. Fluids
,
10
(9), pp.
S153
S154
.
35.
Nait Bouda
,
N.
,
Babbou
,
A.
, and
Harmand
,
S.
,
2014
, “
Reverse Flow Region Associated to a Heat Transfer in a Turbulent Wall Jet
,”
Int. J. Therm. Sci.
,
85
, pp.
151
158
.
36.
Vogel
,
J. C.
, and
Eaton
,
J. K.
,
1985
, “
Combined Heat-Transfer and Fluid Dynamic Measurements Downstream of a Backward-Facing Step
,”
ASME J. Heat Transfer
,
107
(
4
), pp.
922
929
.
37.
Yang
,
Y. T.
, and
Tsai
,
T. Y.
,
1998
, “
Numerical Calculation of Turbulent Flow in a Planar Bifurcation With a Protruding Branching Duct
,”
Numer. Heat Transfer, Part A
,
34
(
1
), pp.
61
74
.
You do not currently have access to this content.