In this paper, we have studied the effect of short branches (side chains) on the thermal conductivity (TC) of a polyethylene (PE) chain. With a reverse nonequilibrium molecular dynamics (RNEMD) method, TCs of the pristine PE chain and the PE-ethyl chain are simulated and compared. It shows that the branch has a positive effect to decrease the TC of a PE chain. The TC of the PE-ethyl chain decreases with the number density increase of branches, until the density becomes larger than about eight ethyl per 200 segments, where the TC saturates to be only about 40% that of a pristine PE chain. Because of different weights, different branches will cause a different decrease of TCs, and a heavy branch will lead to a lower TC than a light one. This study is expected to provide some fundamental guidance to obtain a polymer with a low TC.

References

References
1.
Li
,
G.
,
Shrotriya
,
V.
,
Yao
,
Y.
,
Huang
,
J.
, and
Yang
,
Y.
,
2007
, “
Manipulating Regioregular Poly (3-Hexylthiophene): [6,6]-Phenyl-C61-Butyric Acid Methyl Ester Blends-Route Towards High Efficiency Polymer Solar Cells
,”
J. Mater. Chem.
,
17
(
30
), pp.
3126
3140
.
2.
Nie
,
Z.
, and
Kumacheva
,
E.
,
2008
, “
Patterning Surfaces With Functional Polymers
,”
Nat. Mater.
,
7
(
4
), pp.
277
290
.
3.
Liu
,
C.
,
2007
, “
Recent Developments in Polymer MEMS
,”
Adv. Mater.
,
19
(
22
), pp.
3783
3790
.
4.
Ryan
,
A. J.
,
2008
, “
Nanotechnology: Squaring Up With Polymers
,”
Nature
,
456
(
7220
), pp.
334
336
.
5.
Bruening
,
M.
, and
Dotzauer
,
D.
,
2009
, “
Polymer Films: Just Spray It
,”
Nat. Mater.
,
8
(
6
), pp.
449
450
.
6.
Charnley
,
M.
,
Textor
,
M.
, and
Acikgoz
,
C.
,
2011
, “
Designed Polymer Structures With Antifouling-Antimicrobial Properties
,”
React. Funct. Polym.
,
71
(
3
), pp.
329
334
.
7.
Han
,
Z.
, and
Fina
,
A.
,
2011
, “
Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review
,”
Prog. Polym. Sci.
,
36
(
7
), pp.
914
944
.
8.
Singh
,
V.
,
Bougher
,
T. L.
,
Weathers
,
A.
,
Cai
,
Y.
,
Bi
,
K.
,
Pettes
,
M. T.
,
McMenamin
,
S. A.
,
Lv
,
W.
,
Resler
,
D. P.
,
Gattuso
,
T. R.
,
Altman
,
D. H.
,
Sandhage
,
K. H.
,
Shi
,
L.
,
Henry
,
A.
, and
Cola
,
B. A.
,
2014
, “
High Thermal Conductivity of Chain-Oriented Amorphous Polythiophene
,”
Nat. Nanotechnol.
,
9
(
5
), pp.
384
390
.
9.
Henry
,
A.
, and
Chen
,
G.
,
2008
, “
High Thermal Conductivity of Single Polyethylene Chains Using Molecular Dynamics Simulations
,”
Phys. Rev. Lett.
,
101
(
23
), p.
235502
.
10.
Cao
,
B. Y.
,
Li
,
Y. W.
,
Kong
,
J.
,
Chen
,
H.
,
Xu
,
Y.
,
Yung
,
K.-L.
, and
Cai
,
A.
,
2011
, “
High Thermal Conductivity of Polyethylene Nanowire Arrays Fabricated by an Improved Nanoporous Template Wetting Technique
,”
Polymer
,
52
(
8
), pp.
1711
1715
.
11.
Henry
,
A.
,
Chen
,
G.
,
Plimpton
,
S. J.
, and
Thompson
,
A.
,
2010
, “
1D-to-3D Transition of Phonon Heat Conduction in Polyethylene Using Molecular Dynamics Simulations
,”
Phys. Rev. B
,
82
(
14
), p.
144308
.
12.
Jiang
,
J. W.
,
Zhao
,
J.
,
Zhou
,
K.
, and
Rabczuk
,
T.
,
2012
, “
Superior Thermal Conductivity and Extremely High Mechanical Strength in Polyethylene Chains From Ab Initio Calculation
,”
J. Appl. Phys.
,
111
(
12
), p.
124304
.
13.
Shen
,
S.
,
Henry
,
A.
,
Tong
,
J.
,
Zheng
,
R.
, and
Chen
,
G.
,
2010
, “
Polyethylene Nanofibres With Very High Thermal Conductivities
,”
Nat. Nanotechnol.
,
5
(
4
), pp.
251
255
.
14.
Liu
,
J.
, and
Yang
,
R.
,
2012
, “
Length-Dependent Thermal Conductivity of Single Extended Polymer Chains
,”
Phys. Rev. B
,
86
(
10
), p.
104307
.
15.
Luo
,
T.
,
Esfarjani
,
K.
,
Shiomi
,
J.
,
Henry
,
A.
, and
Chen
,
G.
,
2011
, “
Molecular Dynamics Simulation of Thermal Energy Transport in Polydimethylsiloxane (PDMS)
,”
J. Appl. Phys.
,
109
(
7
), p.
074321
.
16.
Robbins
,
A. B.
, and
Minnich
,
A. J.
,
2015
, “
Crystalline Polymers With Exceptionally Low Thermal Conductivity Studied Using Molecular Dynamics
,”
Appl. Phys. Lett.
,
107
(
20
), p.
201908
.
17.
Umur
,
A.
,
Gemert
,
M. J. C. V.
, and
Ross
,
M. G.
,
1986
,
Introduction to Physical Polymer Science
,
Wiley
, Hoboken, NJ.
18.
Hu
,
Y.
,
Zeng
,
L.
,
Minnich
,
A. J.
,
Dresselhaus
,
M. S.
, and
Chen
,
G.
,
2015
, “
Spectral Mapping of Thermal Conductivity Through Nanoscale Ballistic Transport
,”
Nat. Nanotechnol.
,
10
(
8
), pp.
701
706
.
19.
Zeng
,
L.
,
Collins
,
K. C.
,
Hu
,
Y.
,
Luckyanova
,
M. N.
,
Maznev
,
A. A.
,
Huberman
,
S.
,
Chiloyan
,
V.
,
Zhou
,
J.
,
Huang
,
X.
,
Nelson
,
K. A
., and
Chen
,
G.
,
2015
, “
Measuring Phonon Mean Free Path Distributions by Probing Quasiballistic Phonon Transport in Grating Nanostructures
,”
Sci. Rep.
,
5
(
1
), p.
17131
.
20.
Henry
,
A.
, and
Chen
,
G.
,
2009
, “
Anomalous Heat Conduction in Polyethylene Chains: Theory and Molecular Dynamics Simulations
,”
Phys. Rev. B
,
79
(
14
), p.
144305
.
21.
Sasikumar
,
K.
, and
Keblinski
,
P.
,
2011
, “
Effect of Chain Conformation in the Phonon Transport Across a Si-Polyethylene Single-Molecule Covalent Junction
,”
J. Appl. Phys.
,
109
(
11
), p.
114307
.
22.
Savin
,
A. V.
, and
Savina
,
O. I.
,
2014
, “
Dependence of the Thermal Conductivity of a Polymer Chain on Its Tension
,”
Phys. Solid State
,
56
(
8
), pp.
1664
1672
.
23.
Liao
,
Q.
,
Zeng
,
L.
,
Liu
,
Z.
, and
Liu
,
W.
,
2016
, “
Tailoring Thermal Conductivity of Single-Stranded Carbon-Chain Polymers Through Atomic Mass Modification
,”
Sci. Rep.
,
6
(
1
), p.
34999
.
24.
Ma
,
H.
, and
Tian
,
Z.
,
2017
, “
Effects of Polymer Topology and Morphology on Thermal Transport: A Molecular Dynamics Study of Bottlebrush Polymers
,”
Appl. Phys. Lett.
,
110
(
9
), p.
091903
.
25.
Zhang
,
T.
,
Wu
,
X.
, and
Luo
,
T.
,
2014
, “
Polymer Nanofibers With Outstanding Thermal Conductivity and Thermal Stability: Fundamental Linkage Between Molecular Characteristics and Macroscopic Thermal Properties
,”
J. Phys. Chem. C
,
118
(
36
), pp.
21148
21159
.
26.
Zhang
,
L.
,
Ruesch
,
M.
,
Zhang
,
X.
,
Bai
,
Z.
, and
Liu
,
L.
,
2015
, “
Tuning Thermal Conductivity of Crystalline Polymer Nanofibers by Interchain Hydrogen Bonding
,”
RSC Adv.
,
5
(
107
), pp.
87981
87986
.
27.
Zhang
,
T.
, and
Luo
,
T.
,
2012
, “
Morphology-Influenced Thermal Conductivity of Polyethylene Single Chains and Crystalline Fibers
,”
J. Appl. Phys.
,
112
(
9
), p.
094304
.
28.
Ma
,
H.
, and
Tian
,
Z.
,
2015
, “
Effects of Polymer Chain Confinement on Thermal Conductivity of Ultrathin Amorphous Polystyrene Films
,”
Appl. Phys. Lett.
,
107
(
7
), p.
073111
.
29.
Luo
,
T.
, and
Lloyd
,
J. R.
,
2012
, “
Enhancement of Thermal Energy Transport Across Graphene/Graphite and Polymer Interfaces: A Molecular Dynamics Study
,”
Adv. Funct. Mater.
,
19
(
12
), pp.
587
596
.
30.
Sun
,
H.
,
1998
, “
COMPASS: An Ab Initio Force-Field Optimized for Condensed-Phase Applications Overview With Details on Alkane and Benzene Compounds
,”
J. Phys. Chem. B
,
102
(
38
), pp.
7338
7364
.
31.
Sun
,
H.
,
Ren
,
P.
, and
Fried
,
J. R.
,
1998
, “
The COMPASS Force Field: Parameterization and Validation for Phosphazenes
,”
Comput. Theor. Polym. Sci.
,
8
(
1–2
), pp.
229
246
.
32.
Rigby
,
D.
,
Sun
,
H.
, and
Eichinger
,
B. E.
,
1997
, “
Computer Simulations of Poly (Ethylene Oxide): Force Field, PVT Diagram and Cyclization Behavior
,”
Polym. Int.
,
44
(
3
), pp.
311
330
.
33.
Nose
,
S.
,
1984
, “
A Unified Formulation of the Constant Temperature Molecular Dynamics Methods
,”
Rev. Faith Int. Affairs
,
81
(
1
), p. 511.http://dx.doi.org/10.1063/1.447334
34.
Hoover
,
W. G.
,
1985
, “
Canonical Dynamics: Equilibrium Phase-Space Distributions
,”
Phys. Rev. A
,
31
(
3
), pp.
1695
1697
.
35.
Müllerplathe
,
F.
,
1997
, “
A Simple Nonequilibrium Molecular Dynamics Method for Calculating the Thermal Conductivity
,”
J. Chem. Phys.
,
106
(
14
), p.
6082
.http://dx.doi.org/10.1063/1.473271
36.
Huang
,
C.
,
Wang
,
Q.
, and
Rao
,
Z.
,
2015
, “
Thermal Conductivity Prediction of Copper Hollow Nanowire
,”
Int. J. Therm. Sci.
,
94
, pp.
90
95
.
37.
Ni
,
B.
,
Watanabe
,
T.
, and
Phillpot
,
S. R.
,
2009
, “
Thermal Transport in Polyethylene and at Polyethylene-Diamond Interfaces Investigated Using Molecular Dynamics Simulation
,”
J. Phys.: Condens. Matter
,
21
(
8
), p. 084219.https://doi.org/10.1088/0953-8984/21/8/084219
38.
Hu
,
G. J.
,
Cao
,
B. Y.
, and
Li
,
Y. W.
,
2014
, “
Thermal Conduction in a Single Polyethylene Chain Using Molecular Dynamics Simulations
,”
Chin. Phys. Lett.
,
31
(
8
), p. 086501.https://doi.org/10.1088/0256-307X/31/8/086501
39.
Termentzidis
,
K.
,
Merabia
,
S.
,
Chantrenne
,
P.
, and
Keblinski
,
P.
,
2011
, “
Cross-Plane Thermal Conductivity of Superlattices With Rough Interfaces Using Equilibrium and Non-Equilibrium Molecular Dynamics
,”
Int. J. Heat Mass Transfer
,
54
(
9
), pp.
2014
2020
.
40.
Landry
,
E. S.
,
Hussein
,
M. I.
, and
McGaughey
,
A. J. H.
,
2008
, “
Complex Superlattice Unit Cell Designs for Reduced Thermal Conductivity
,”
Phys. Rev. B
,
77
(
18
), p.
184302
.
41.
Hu
,
L.
,
Evans
,
W. J.
, and
Keblinski
,
P.
,
2011
, “
One-Dimensional Phonon Effects in Direct Molecular Dynamics Method for Thermal Conductivity Determination
,”
J. Appl. Phys.
,
110
(
11
), p.
113511
.
42.
Qian
,
X.
,
Gu
,
X. K.
, and
Yang
,
R. G.
,
2016
, “
Lattice Thermal Conductivity of Organic-Inorganic Hybrid Perovskite CH3NH3PbI
,”
Appl. Phys. Lett.
,
108
(
6
), p.
063902
.
43.
Li
,
C. J.
,
Li
,
G.
, and
Zhao
,
H. J.
,
2015
, “
Thermal Conductivity Variation of Graphene With Patterned Double-Side Hydrogen Doping
,”
J. Appl. Phys.
,
118
(
7
), p.
075102
.
44.
Thomas
,
J. A.
,
Turney
,
J. E.
,
Iutzi
,
R. M.
,
Amon
,
C. H.
, and
McGaughey
,
A. J.
,
2010
, “
Predicting Phonon Dispersion Relations and Lifetimes From the Spectral Energy Density
,”
Phys. Rev. B
,
81
(
8
), p.
081411
.
45.
Feng
,
T.
,
Qiu
,
B.
, and
Ruan
,
X.
,
2015
, “
Anharmonicity and Necessity of Phonon Eigenvectors in the Phonon Normal Mode Analysis
,”
J. Appl. Phys.
,
117
(
19
), p.
195102
.
You do not currently have access to this content.