A novel solid–gas thermochemical sorption thermal energy storage (TES) system for solar heating and cooling applications operating on four steady-state flow devices and with two transient storage tanks is proposed. The TES system stores solar or waste thermal energy in the form of chemical bonds as the working gas is desorbed from the solid. Strontium chloride–ammonia is the working solid–gas couple in the thermochemical sorption TES system. Strontium chloride–ammonia has a moderate working temperature range that is appropriate for building heating and cooling applications. The steady-state devices in the system are simulated using Aspen Plus, and the two transient components are simulated using the ENGINEERING EQUATION SOLVER (EES) package. Multiple cases are examined of different heat and cold production temperatures for both heating and cooling applications for a constant thermal energy input temperature. Energy and exergy analyses are performed on the system for all simulated cases. The maximum energy and exergy efficiencies for heating applications are 65.4% and 50.8%, respectively, when the heat is generated at a temperature of 87 °C. The maximum energy and exergy efficiencies for cooling applications are 29.3% when the cold production temperature is 0 °C and 22.9% when it is −35 °C, respectively. The maximum heat produced per mass of the ammonia produced, for 100% conversion of the reactants in the chemical reaction, is 2010 kJ/kg at a heat production temperature of 87 °C, and the maximum cold energy generated is 902 kJ/kg at a temperature of 0 °C. Finally, the system is modified to operate as a heat pump, and energy and exergy analyses are performed on the thermochemical heat pump. It is found that the maximum energy and exergy coefficients of performance (COP) achieved by upgrading heat from 87 °C to 96 °C are 1.4 and 3.6, respectively, and the maximum energy and exergy efficiencies are 56.4% and 79.0%, respectively.

References

References
1.
Wang
,
R. Z.
,
Ge
,
T. S.
,
Chen
,
C. J.
,
Ma
,
Q.
, and
Xiong
,
Z. Q.
,
2009
, “
Solar Sorption Cooling Systems for Residential Applications: Options and Guidelines
,”
Int. J. Refrig.
,
32
(
4
), pp.
638
660
.
2.
Balaras
,
C. A.
,
Grossman
,
G.
,
Henning
,
H. M.
,
Infante Ferreira
,
C. A.
,
Podesser
,
E.
,
Wang
,
L.
, and
Wiemken
,
E.
,
2007
, “
Solar Air Conditioning in Europe—An Overview
,”
Renewable Sustainable Energy Rev.
,
11
(
2
), pp.
299
314
.
3.
IEA,
2015
, “
IEA SHC Solar Heating & Cooling
,” IEA Solar Heating and Cooling Programme, International Energy Agency, Paris, France, pp.
127
32
.
4.
Dincer
,
I.
, and
Rosen
,
M. A.
,
2010
,
Thermal Energy Storage: Systems and Applications
,
2nd ed.
,
Wiley
,
Chichester, UK
.
5.
Li
,
T. X.
,
Wang
,
R. Z.
, and
Yan
,
T.
,
2015
, “
Solid-Gas Thermochemical Sorption Thermal Battery for Solar Cooling and Heating Energy Storage and Heat Transformer
,”
Energy
,
84
, pp.
745
758
.
6.
Pielichowska
,
K.
, and
Pielichowski
,
K.
,
2014
, “
Phase Change Materials for Thermal Energy Storage
,”
Prog. Mater. Sci.
,
65
, pp.
67
123
.
7.
N'Tsoukpoe
,
K. E.
,
Liu
,
H.
,
Le Pierres
,
N.
, and
Luo
,
L.
,
2009
, “
A Review on Long-Term Sorption Solar Energy Storage
,”
Renewable Sustainable Energy Rev.
,
13
(
9
), pp.
2385
2396
.
8.
Pinel
,
P.
,
Cruickshank
,
C. A.
,
Beausoleil-Morrison
,
I.
, and
Wills
,
A.
,
2011
, “
A Review of Available Methods for Seasonal Storage of Solar Thermal Energy in Residential Applications
,”
Renewable Sustainable Energy Rev.
,
15
(
7
), pp.
3341
3359
.
9.
Li
,
T. X.
,
Wang
,
R. Z.
, and
Li
,
H.
,
2014
, “
Progress in the Development of Solid-Gas Sorption Refrigeration Thermodynamic Cycle Driven by Low-Grade Thermal Energy
,”
Prog. Energy Combust. Sci.
,
40
, pp.
1
58
.
10.
Yu
,
N.
,
Wang
,
R. Z.
, and
Wang
,
L. W.
,
2013
, “
Sorption Thermal Storage for Solar Energy
,”
Prog. Energy Combust. Sci.
,
39
(
5
), pp.
489
514
.
11.
Narayanan
,
S.
,
Li
,
X.
,
Yang
,
S.
,
McKay
,
I.
,
Kim
,
H.
, and
Wang
,
E. N.
,
2013
, “
Design and Optimization of High Performance Adsorption-Based Thermal Battery
,”
ASME
Paper No. HT2013-17472.
12.
Hauer
,
A.
,
2007
,
Sorption Theory for Thermal Energy Storage
,
Springer
,
Dordrecht, The Netherlands
.
13.
Janchen
,
J.
,
Ackermann
,
D.
,
Stach
,
H.
, and
Brosicke
,
W.
,
2004
, “
Studies of the Water Adsorption on Zeolites and Modified Mesoporous Materials for Seasonal Storage of Solar Heat
,”
Sol. Energy
,
76
(1–3), pp.
339
344
.
14.
Aristov
,
Y. I.
,
2013
, “
Challenging Offers of Material Science for Adsorption Heat Transformation: A Review
,”
Appl. Therm. Eng.
,
50
(
2
), pp.
1610
1618
.
15.
Wang
,
R. Z.
,
Xia
,
Z. Z.
,
Wang
,
L. W.
,
Lu
,
Z. S.
,
Li
,
S. L.
,
Li
,
T. X.
,
Wu
,
J. Y.
, and
He
,
S.
,
2011
, “
Heat Transfer Design in Adsorption Refrigeration Systems for Efficient Use of Low-Grade Thermal Energy
,”
Energy
,
36
(
9
), pp.
5425
5439
.
16.
Chan
,
C. W.
,
Ling-Chin
,
J.
, and
Roskilly
,
A. P.
,
2013
, “
A Review of Chemical Heat Pumps, Thermodynamic Cycles and Thermal Energy Storage Technologies for Low Grade Heat Utilisation
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
1257
1273
.
17.
Cot-Gores
,
J.
,
Castell
,
A.
, and
Cabeza
,
L. F.
,
2012
, “
Thermochemical Energy Storage and Conversion: A-State-of-the-Art Review of the Experimental Research Under Practical Conditions
,”
Renewable Sustainable Energy Rev.
,
16
(
7
), pp.
5207
5224
.
18.
Li
,
T. X.
,
Wang
,
R. Z.
,
Kiplagat
,
J. K.
,
Chen
,
H.
, and
Wang
,
L. W.
,
2011
, “
A New Target-Oriented Methodology of Decreasing the Regeneration Temperature of Solid-Gas Thermochemical Sorption Refrigeration System Driven by Low-Grade Thermal Energy
,”
Int. J. Heat Mass Transfer
,
54
(21–22), pp.
4719
4729
.
19.
Whiting
,
G. T.
,
Grondin
,
D.
,
Stosic
,
D.
,
Bennici
,
S.
, and
Auroux
,
A.
,
2014
, “
Zeolite-MgCl2 Composites as Potential Long-Term Heat Storage Materials: Influence of Zeolite Properties on Heats of Water Sorption
,”
Sol. Energy Mater. Sol. Cells
,
128
, pp.
289
295
.
20.
Hongois
,
S.
,
Kuznik
,
F.
,
Stevens
,
P.
, and
Roux
,
J. J.
,
2011
, “
Development and Characterisation of a New MgSO4-Zeolite Composite for Long-Term Thermal Energy Storage
,”
Sol. Energy Mater. Sol. Cells
,
95
(
7
), pp.
1831
1837
.
21.
Mauran
,
S.
,
Lahmidi
,
H.
, and
Goetz
,
V.
,
2008
, “
Solar Heating and Cooling by a Thermochemical Process. First Experiments of a Prototype Storing 60kWh by a Solid/Gas Reaction
,”
Sol. Energy
,
82
(
7
), pp.
623
636
.
22.
Zhu
,
D.
,
Wu
,
H.
, and
Wang
,
S.
,
2006
, “
Experimental Study on Composite Silica Gel Supported CaCl2 Sorbent for Low Grade Heat Storage
,”
Int. J. Therm. Sci.
,
45
(
8
), pp.
804
813
.
23.
Balasubramanian
,
G.
,
Ghommem
,
M.
,
Hajj
,
M. R.
,
Wong
,
W. P.
,
Tomlin
,
J. A.
, and
Puri
,
I. K.
,
2010
, “
Modeling of Thermochemical Energy Storage by Salt Hydrates
,”
Int. J. Heat Mass Transfer
,
53
(25–26), pp.
5700
5706
.
24.
Obermeier
,
J.
,
Müller
,
K.
, and
Arlt
,
W.
,
2015
, “
Thermodynamic Analysis of Chemical Heat Pumps
,”
Energy
,
88
, pp.
489
496
.
25.
Ferreira
,
L. S.
, and
Trierweiler
,
J. O.
,
2009
, “
Modeling and Simulation of the Polymeric Nanocapsule Formation Process
,”
IFAC Proc. Vol. (IFAC-PapersOnline)
,
42
(11), pp.
405
410
.
You do not currently have access to this content.