The aim of this study is to present a reduced spectral line-based weighted sum of gray gases (SLW) model to simulate the radiation heat transfer in nongray media at high temperatures. Inverse approach is used to divide the absorption cross section band into a clear gas with one gray gas and two gray gases, which are called the S-1 and S-2 approaches, respectively. The unknown absorption cross sections are determined from the knowledge of measured total incident intensities received by wall surfaces. In order to simulate the exact solution of radiation heat transfer in nongray gaseous media, the discrete transfer method (DTM) in combination with S-20 model is used, where the nongray medium is replaced with a set of a clear gas and 20 gray gases. The inverse problem is formulated as an optimization problem to minimize a least square objective function, which is solved by the conjugate gradient method (CGM). The accuracy of the present method is verified by comparing with previous researches and the S-20 approach with a large number of gray gases. The effects of noisy data on the inverse solution are investigated by considering an extreme case with large measurement error. The results show that the unknown absorption cross sections are retrieved well, even for noisy data.

References

References
1.
Chu
,
H.
,
Liu
,
F.
, and
Zhou
,
H.
,
2011
, “
Calculations of Gas Thermal Radiation Transfer in One-Dimensional Planar Enclosure Using LBL and SNB Models
,”
Int. J. Heat Mass Transfer
,
54
(
21–22
), pp.
4736
4745
.
2.
Denison
,
M. K.
, and
Webb
,
B. W.
,
1993
, “
A Spectral Line-Based Weighted-Sum-of-Gray-Gases Model for Arbitrary RTE Solvers
,”
ASME J. Heat Transfer
,
115
(
4
), pp.
1004
1012
.
3.
Denison
,
M. K.
, and
Webb
,
B. W.
,
1995
, “
The Spectral Line-Based Weighted-Sum-of-Gray-Gases Model in Nonisothermal Nonhomogeneous Media
,”
ASME J. Heat Transfer
,
117
(
2
), pp.
359
365
.
4.
Denison
,
M. K.
, and
Webb
,
B. W.
,
1995
, “
The Spectral-Line Weighted-Sum-of-Gray-Gases Model for H2O/CO2 Mixtures
,”
ASME J. Heat Transfer
,
117
(
3
), pp.
788
792
.
5.
Solovjov
,
V. P.
, and
Webb
,
B. W.
,
1998
, “
Radiative Transfer Model Parameters for Carbon Monoxide at High Temperature
,”
11th International Heat Transfer Conference
(
IHTC
), Kyongju, Korea, Aug. 23–28, pp.
445
450
.http://ihtcdigitallibrary.com/conferences/7d6ce0dc3b4c5dd2,797e9f225ed6dfa6,052b67cf7befdd08.html
6.
Solovjov
,
V. P.
, and
Webb
,
B. W.
,
2000
, “
SLW Modeling of Radiative Transfer in Multicomponent Gas Mixtures
,”
J. Quant. Spectrosc. Radiat. Transfer
,
65
(
4
), pp.
655
672
.
7.
Solovjov
,
V. P.
, and
Webb
,
B. W.
,
2009
, “
The SLW Model: Exact Limit and Relationship to Other Global Methods
,”
ASME
Paper No. HT2009-88322.
8.
Colomer
,
G.
,
Consul
,
R.
, and
Oliva
,
A.
,
2007
, “
Coupled Radiation and Natural Convection: Different Approaches of the SLW Model for a Non-Gray Gas Mixture
,”
J. Quant. Spectrosc. Radiat. Transfer
,
107
(
1
), pp.
30
46
.
9.
We
,
G.
,
Ostrowski
,
Z.
, and
Białecki
,
R. A.
,
2010
, “
A Novel Approach of Evaluating Absorption Line Black Body Distribution Function Employing Proper Orthogonal Decomposition
,”
J. Quant. Spectrosc. Radiat. Transfer
,
111
(
2
), pp.
309
317
.
10.
Liu
,
F.
,
Chu
,
H.
,
Zhou
,
H.
, and
Smallwood
,
G.
,
2013
, “
Evaluation of the Absorption Line Blackbody Distribution Function of CO2 and H2O Using the Proper Orthogonal Decomposition and Hyperbolic Correlations
,”
J. Quant. Spectrosc. Radiat. Transfer
,
128
, pp.
27
33
.
11.
Pearson
,
J. T.
,
Webb
,
B. W.
,
Solovjov
,
V. P.
, and
Ma
,
J.
,
2014
, “
Efficient Representation of the Absorption Line Blackbody Distribution Function for H2O, CO2, and CO at Variable Temperature, Mole Fraction, and Total Pressure
,”
J. Quant. Spectrosc. Radiat. Transfer
,
138
, pp.
82
96
.
12.
Solovjov
,
V. P.
,
Lemonnier
,
D.
, and
Webb
,
B. W.
,
2011
, “
The SLW-1 Model for Efficient Prediction of Radiative Transfer in High Temperature Gases
,”
J. Quant. Spectrosc. Radiat. Transfer
,
112
(
7
), pp.
1205
1212
.
13.
Li
,
H.
, and
Ozisik
,
M. N.
,
1992
, “
Estimation of the Radiation Source Term With a Conjugate-Gradient Method of Inverse Analysis
,”
J. Quant. Spectrosc. Radiat. Transfer
,
48
(
3
), pp.
237
244
.
14.
Li
,
H.
, and
Ozisik
,
M. N.
,
1992
, “
Identification of the Temperature Profile in an Absorbing, Emitting, and Isotropically Scattering Medium by Inverse Analysis
,”
ASME J. Heat Transfer
,
114
(
4
), pp.
1060
1063
.
15.
Siewert
,
C.
,
1993
, “
An Inverse Source Problem in Radiative Transfer
,”
J. Quant. Spectrosc. Radiat. Transfer
,
50
(
6
), pp.
603
609
.
16.
Li
,
H.
,
1997
, “
Inverse Radiation Problem in Two-Dimensional Rectangular Media
,”
J. Thermophys. Heat Transfer
,
11
(
4
), pp.
556
561
.
17.
Liu
,
L.
, and
Tan
,
H.
,
2001
, “
Inverse Radiation Problem in Three-Dimensional Complicated Geometric Systems With Opaque Boundaries
,”
J. Quant. Spectrosc. Radiat. Transfer
,
68
(
5
), pp.
559
573
.
18.
Qiu
,
S.
,
Lou
,
C.
, and
Xu
,
D.
,
2014
, “
A Hybrid Method for Reconstructing Temperature Distributions in a Radiant Enclosure
,”
Numer. Heat Transfer, Part A
,
66
(
10
), pp.
1097
1111
.
19.
Liu
,
L.
,
2004
, “
Inverse Radiative Problem in Semitransparent Slab With Variable Spatial Refractive Index
,”
J. Thermophys. Heat Transfer
,
18
(
3
), pp.
410
413
.
20.
Hosseini Sarvari
,
S. M.
,
2007
, “
Inverse Estimation of Radiative Source Term in Two-Dimensional Irregular Media
,”
Fifth Symposium on Radiative Heat Transfer
, Bodrum, Turkey, June 17–22.
21.
Namjoo
,
A.
,
Hosseini Sarvari
,
S. M.
,
Behzadmehr
,
A.
, and
Mansouri
,
S. H.
,
2009
, “
Inverse Radiation Problem of Temperature Distribution in One-Dimensional Isotropically Scattering Participating Slab With Variable Refractive Index
,”
J. Quant. Spectrosc. Radiat. Transfer
,
110
(
8
), pp.
491
505
.
22.
Payan
,
S.
,
Hosseini Sarvari
,
S. M.
, and
Behzadmehr
,
A.
,
2013
, “
Inverse Estimation of Temperature Profile in a Non-Gray Medium With Soot Particles Between Two Parallel Plates
,”
Numer. Heat Transfer, Part A
,
63
(
1
), pp.
31
54
.
23.
Sanchez
,
R.
, and
McCormick
,
N.
,
1982
, “
Numerical Evaluation of Optical Single-Scattering Properties Using Multiple-Scattering Inverse Transport Methods
,”
J. Quant. Spectrosc. Radiat. Transfer
,
28
(
3
), pp.
169
184
.
24.
Subramaniam
,
S.
, and
Mengüç
,
M. P.
,
1991
, “
Solution of the Inverse Radiation Problem for Inhomogeneous and Anisotropically Scattering Media Using a Monte Carlo Technique
,”
Int. J. Heat Mass Transfer
,
34
(
1
), pp.
253
266
.
25.
Menguc
,
M. P.
, and
Manickavasagam
,
S.
,
1993
, “
Inverse Radiation Problem in Axisymmetric Cylindrical Scattering Media
,”
J. Thermophys. Heat Transfer
,
7
(
3
), pp.
479
486
.
26.
Ho
,
C. H.
, and
Özişik
,
M.
,
1988
, “
Inverse Radiation Problems in Inhomogeneous Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
40
(
5
), pp.
553
560
.
27.
Ho
,
C. H.
, and
Özişik
,
M.
,
1989
, “
An Inverse Radiation Problem
,”
Int. J. Heat Mass Transfer
,
32
(
2
), pp.
335
341
.
28.
Hosseini Sarvari
,
S. M.
,
2015
, “
Inverse Reconstruction of Path-Length κ-Distribution in a Plane-Parallel Radiative Medium
,”
Numer. Heat Transfer, Part A
,
68
(
3
), pp.
336
354
.
29.
Lockwood
,
F.
, and
Shah
,
N.
,
1981
, “
A New Radiation Solution Method for Incorporation in General Combustion Prediction Procedures
,”
Symposium on Combustion
, Waterloo, ON, Canada, Aug. 17, pp.
1405
1414
.
30.
Ozisik
,
M. N.
, and
Orlande
,
H. R. B.
,
2000
,
Inverse Heat Transfer
,
Taylor and Francis
,
New York
.
You do not currently have access to this content.