A combined transpiration and opposing jet cooling method was experimentally investigated for protecting porous struts with microslits in the leading edge. Schlieren images showed that this cooling method significantly affects the stability of the flow field and the profile of the detached shock wave. Three different states of flow fields were observed when increasing the coolant injection pressure of a strut having a 0.20 mm wide microslit. The detached bow shock was pushed away by the opposing jet; it then became unstable and even disappeared when the coolant injection pressure was increased. Combined transpiration and opposing jet cooling could effectively cool the entire strut, especially the leading edge. The leading edge cooling efficiency increased from 3.5% for the leading edge without a slit to 52.8% for the leading edge with a 0.20 mm wide slit when the coolant injection pressure was 0.55 MPa. Moreover, combined transpiration and opposing jet cooling with nonuniform injection distribution made the strut temperature distribution more uniform and caused the maximum temperature to decrease compared to standard transpiration cooling.

References

References
1.
Segal
,
C.
,
2009
,
The Scramjet Engine: Processes and Characteristics
,
Cambridge University Press
,
Cambridge, UK
.
2.
Mitani
,
T.
, and
Kouchi
,
T.
,
2005
, “
Flame Structures and Combustion Efficiency Computed for a Mach 6 Scramjet Engine
,”
Combust. Flame
,
142
(
3
), pp.
187
196
.
3.
Belanger
,
J.
, and
Hornung
,
H. G.
,
1996
, “
Transverse Jet Mixing and Combustion Experiments in Hypervelocity Flows
,”
J. Propul. Power
,
12
(
1
), pp.
186
192
.
4.
Waitz
,
I. A.
,
Marble
,
F. E.
, and
Zukoski
,
E. E.
,
1993
, “
Investigation of a Contoured Wall Injector for Hypervelocity Mixing Augmentation
,”
AIAA J.
,
31
(
6
), pp.
1014
1021
.
5.
Génin
,
F.
, and
Menon
,
S.
,
2010
, “
Simulation of Turbulent Mixing Behind a Strut Injector in Supersonic Flow
,”
AIAA J.
,
48
(
3
), pp.
526
539
.
6.
Tani
,
K.
,
Kanda
,
T.
, and
Kudo
,
K.
,
2006
, “
Aerodynamic Performance of Scramjet Inlet Models with a Single Strut
,”
J. Propul. Power
,
22
(
4
), pp.
905
912
.
7.
Masuya
,
G.
,
Komuro
,
T.
,
Murakami
,
A.
,
Shinozaki
,
N.
,
Nakamura
,
A.
,
Murayamall
,
M.
, and
Ohwaki
,
K.
,
1995
, “
Ignition and Combustion Performance of Scramjet Combustors With Fuel Injection Struts
,”
J. Propul. Power
,
11
(
2
), pp.
301
307
.
8.
Gerlinger
,
P.
,
Stoll
,
P.
,
Kindler
,
M.
,
Schneider
,
F.
, and
Aigner
,
M.
,
2008
, “
Numerical Investigation of Mixing and Combustion Enhancement in Supersonic Combustors by Strut Induced Streamwise Vorticity
,”
Aerosp. Sci. Technol.
,
12
(
2
), pp.
159
168
.
9.
Tomioka
,
S.
,
Kanda
,
T.
,
Tani
,
K.
,
Mitani
,
T.
,
Shimura
,
T.
, and
Chinzei
,
N.
,
1998
, “
Testing of a Scramjet Engine With a Strut in M8 Flight Conditions
,”
AIAA
Paper No. AIAA 98-3134.
10.
Desikan
,
S. L. N.
, and
Kurian
,
J.
,
2005
, “
Mixing Studies in Supersonic Flow Employing Strut Based Hypermixers
,”
AIAA
Paper No. 2005-3643.
11.
Fry
,
R. S.
,
2004
, “
A Century of Ramjet Propulsion Technology Evolution
,”
J. Propul. Power
,
20
(
1
), pp.
27
58
.
12.
Tomioka
,
S.
,
Murakami
,
A.
,
Kudo
,
K.
, and
Mitani
,
T.
,
2001
, “
Combustion Tests of a Staged Supersonic Combustor With a Strut
,”
J. Propul. Power
,
17
(
2
), pp.
293
300
.
13.
Droeske
,
N.
,
Foerster
,
F. J.
,
Weigand
,
B.
, and
von Wolfersdorf
,
J.
,
2015
, “
Investigation of Heat Loads Onto an Internally Cooled Strut Injector for SCRamjet Application
,”
AIAA
Paper No. 2015-3555.
14.
Sun
,
B.
, and
Zheng
,
L. M.
,
2006
, “
Research of Scramjet Strut Thermal Environment and Thermal Protection Scheme
,”
J. Aerosp. Power
,
21
(
2
), pp.
336
341
.
15.
Campbell
,
B. T.
,
Siebenhaar
,
A.
, and
Nguyen
,
T.
,
2001
, “
Strutjet Engine Performance
,”
J. Propul. Power
,
17
(
6
), pp.
1227
1232
.
16.
Chandrasekhar
,
C.
,
Ramanujachari
,
V.
, and
Reddy
,
T. K. K.
,
2012
, “
Experimental Investigations of Hydrocarbon Fueled Scramjet Combustor by Employing High Temperature Materials for the Construction of Fuel Injection Struts
,”
Int. J. Sci. Technol.
,
1
(
12
), pp.
671
678
.http://www.journalofsciences-technology.org/archive/2012/dec_vol_1_no_12/8253731349428435.pdf
17.
Liu
,
Y. Q.
,
Jiang
,
P. X.
,
Xiong
,
Y. B.
, and
Wang
,
Y. P.
,
2013
, “
Experimental and Numerical Investigation of Transpiration Cooling for Sintered Porous Flat Plates
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
997
1007
.
18.
Gulli
,
S.
,
Maddalena
,
L.
, and
Hosder
,
S.
,
2011
, “
Investigation of Transpiration Cooling Effectiveness for Air-Breathing Hypersonic Vehicles
,”
AIAA
Paper No. 2011-2253.
19.
Langener
,
T.
,
Wolfersdorf
,
J. V.
, and
Steelant
,
J.
,
2011
, “
Experimental Investigations on Transpiration Cooling for Scramjet Applications Using Different Coolants
,”
AIAA J.
,
49
(
7
), pp.
1409
1419
.
20.
Wang
,
J. H.
,
Zhao
,
L. J.
,
Wang
,
X.
,
Ma
,
J.
, and
Lin
,
J.
,
2014
, “
An Experimental Investigation on Transpiration Cooling of Wedge Shaped Nose Cone With Liquid Coolant
,”
Int. J. Heat Mass Transfer
,
75
, pp.
442
449
.
21.
Zhao
,
L.
,
Wang
,
J.
,
Ma
,
J.
,
Lin
,
J.
,
Peng
,
J.
,
Qu
,
D.
, and
Chen
,
L.
,
2014
, “
An Experimental Investigation on Transpiration Cooling Under Supersonic Condition Using a Nose Cone Model
,”
Int. J. Therm. Sci.
,
84
, pp.
207
213
.
22.
Foreest
,
A. V.
,
Sippel
,
M.
,
Gülhan
,
A.
,
Esser
,
B.
,
Ambrosius
,
B. A. C.
, and
Sudmeijer
,
K.
,
2009
, “
Transpiration Cooling Using Liquid Water
,”
J. Thermophys. Heat Transfer
,
23
(
4
), pp.
693
702
.
23.
Zhu
,
Y.
,
Jiang
,
P.
,
Sun
,
J.
, and
Xiong
,
Y.
,
2012
, “
Injector Head Transpiration Cooling Coupled With Combustion in H2/O2 Subscale Thrust Chamber
,”
J. Thermophys. Heat Transfer
,
27
(
1
), pp.
42
51
.
24.
Hald
,
H.
,
Ortelt
,
M.
,
Fischer
,
I.
,
Greuel
,
D.
, and
Haidn
,
O. J.
,
2005
, “
Effusion Cooled CMC Rocket Combustion Chamber
,”
AIAA
Paper No. 2005-3229.
25.
Xiong
,
Y. B.
,
Zhu
,
Y. H.
, and
Jiang
,
P. X.
,
2014
, “
Numerical Simulation of Transpiration Cooling for Sintered Metal Porous Strut of the Scramjet Combustion Chamber
,”
Heat Transfer Eng.
,
35
(
6–8
), pp.
721
729
.
26.
Huang
,
Z.
,
Zhu
,
Y. H.
,
Jiang
,
P. X.
, and
Xiong
,
Y. B.
,
2014
, “
Investigation of a Porous Transpiration-Cooled Strut Injector
,”
J. Propul. Power
,
31
(
1
), pp.
278
285
.
27.
Huang
,
Z.
,
Zhu
,
Y. H.
,
Xiong
,
Y. B.
, and
Jiang
,
P. X.
,
2014
, “
Investigation of Transpiration Cooling for Sintered Metal Porous Struts in Supersonic Flow
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
240
249
.
28.
Jiang
,
P. X.
,
Huang
,
G.
,
Zhu
,
Y.
,
Liao
,
Z.
, and
Huang
,
Z.
,
2017
, “
Experimental Investigation of Combined Transpiration and Film Cooling for Sintered Metal Porous Struts
,”
Int. J. Heat Mass Transfer
,
108
(
Part A
), pp.
232
243
.
29.
Huang
,
W.
,
Jiang
,
Y. P.
,
Yan
,
L.
, and
Liu
,
J.
,
2016
, “
Heat Flux Reduction Mechanism Induced by a Combinational Opposing Jet and Cavity Concept in Supersonic Flows
,”
Acta Astronaut.
,
121
, pp.
164
171
.
30.
Lu
,
H.-B.
, and
Liu
,
W.-Q.
,
2012
, “
Effect of Cavity Physical Dimension on Forward-Facing Cavity and Opposing Jet Thermal Protection System Cooling Efficiency
,”
J. Aerosp. Power
,
27
(
12
), pp.
2666
2673
.
31.
Aso
,
S.
,
Hayashi
,
K.
, and
Mizoguchi
,
M.
,
2002
, “
A Study on Aerodynamic Heating Reduction Due to Opposing Jet in Hypersonic Flow
,”
AIAA
Paper No. AIAA 2002-0646.
32.
Venukumar
,
B.
,
Jagadeesh
,
G.
, and
Reddy
,
K. P. J.
,
2006
, “
Counterflow Drag Reduction by Supersonic Jet for a Blunt Body in Hypersonic Flow
,”
Phys. Fluids
,
18
(
11
), p.
118104
.
33.
Hayashi
,
K.
,
Aso
,
S.
, and
Tani
,
Y.
,
2006
, “
Experimental Study on Thermal Protection System by Opposing Jet in Supersonic Flow
,”
J. Spacecr. Rockets
,
43
(
1
), pp.
233
235
.
34.
Hayashi
,
K.
,
Aso
,
S.
, and
Tani
,
Y.
,
2005
, “
Numerical Study of Thermal Protection System by Opposing Jet
,”
AIAA
Paper No. 2005-188.
35.
Huang
,
G.
,
Zhu
,
Y. H.
,
Huang
,
Z.
, and
Jiang
,
P. X.
,
2017
, “
Investigation of Combined Transpiration and Opposing Jet Cooling of Sintered Metal Porous Struts
,”
Heat Transfer Eng.
(epub).
You do not currently have access to this content.