The state of the art of thermally self-excited oscillatory heat pipe technology is briefly mentioned to emphasize that there exists no oscillating/pulsating heat pipe (OHP/PHP) suited to long-distance heat transport. Responding to such conditions, this study actively proposes a newly devised conceptually novel type of OHP/PHP. In that heat pipe, the adiabatic section works as it were the dream pipe invented by Kurzweg. This striking quality of the proposed new-style OHP/PHP produces high possibilities of long-distance heat transport. To support such optimistic views, an originally planned mathematical model is introduced for feasibility studies. Hydraulic considerations have first been done to understand what conditions are required for sustaining bubble-train flows in a capillary tube of interest. Theoretical analysis has then been made to solve the momentum and energy equations governing the flow velocity and temperature fields in the adiabatic section. The obtained analytical solutions are arranged to give algebraic expressions of the effective thermal diffusivity, the performance index combined with the tidal displacement, and the required electric power. Computed results of those three are displayed in the figures to demonstrate the realizability of that novel OHP.

References

References
1.
Akachi
,
H.
,
1990
, “
Structure of a Heat Pipe
,” U.S. Patent No.
US 4921041 A
.
2.
Akachi
,
H.
,
1993
, “
Structure of Micro-Heat Pipe
,” U.S. Patent No.
US5219020 A
3.
Akachi
,
H.
,
Polasek
,
F.
, and
Stulc
,
P.
,
1996
, “
Pulsating Heat Pipes
,”
Fifth International Heat Pipe Symposium
, Melbourne, Australia, Nov. 17–20, pp.
208
217
.
4.
Akachi
,
H.
, and
Polasek
,
F.
,
1997
, “
Thermal Control of IGBT Modules in Traction Drives by Pulsating Heat Pipes
,”
Tenth International Heat Pipe Conference
, Stuttgart, Germany, Sept. 21–25.
5.
Lin
,
L.
,
Ponnappan
,
R.
, and
Leland
,
J.
,
2001
, “
Experimental Investigation of Oscillating Heat Pipes
,”
AIAA J. Thermophys. Heat Transfer
,
15
(
4
), pp.
395
400
.
6.
Cao
,
Y.
, and
Gao
,
M.
,
2002
, “
Wickless Network Heat Pipes for High Heat Flux Spreading Applications
,”
Int. J. Heat Mass Transfer
,
45
(
12
), pp.
2539
2547
.
7.
Yang
,
H.
,
Khandekar
,
S.
, and
Groll
,
M.
,
2009
, “
Performance Characteristics of Pulsating Heat Pipes as Integral Thermal Spreaders
,”
Int. J. Heat Mass Transfer
,
48
(
4
), pp.
815
824
.
8.
Keary
,
D.
, and
Griffin
,
J.
,
2014
, “
An Open Loop Pulsating Heat Pipe for Integrated Electronic Cooling Applications
,”
ASME J. Heat Transfer
,
136
(
8
), p.
081401
.
9.
Holley
,
B.
, and
Faghri
,
A.
,
2005
, “
Analysis of Pulsating Heat Pipe With Capillary Wick and Varying Channel Diameter
,”
Int. J. Heat Mass Transfer
,
48
(
13
), pp.
2635
2651
.
10.
Xu
,
J.
,
Zhang
,
Y.
, and
Ma
,
H.
,
2009
, “
Effect of Internal Wick Structure on Liquid-Vapor Oscillating Flow and Heat Transfer in an Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
131
(
12
), p.
121012
.
11.
Xian
,
H.
,
Yang
,
Y.
,
Liu
,
D.
, and
Du
,
X.
,
2010
, “
Heat Transfer Characteristics of Oscillating Heat Pipe With Water and Ethanol as Working Fluids
,”
ASME J. Heat Transfer
,
132
(
12
), p.
121501
.
12.
Hathaway
,
A. A.
,
Wilson
,
C. A.
, and
Ma
,
H. B.
,
2012
, “
Experimental Investigation of Uneven-Turn Water and Acetone Oscillating Heat Pipes
,”
AIAA J. Thermophys. Heat Transfer
,
26
(
1
), pp.
115
122
.
13.
Kwon
,
G. H.
, and
Kim
,
S. J.
,
2015
, “
Experimental Investigation on the Thermal Performance of a Micro Pulsating Heat Pipe With a Dual-Diameter Channel
,”
Int. J. Heat Mass Transfer
,
89
(
10
), pp.
817
828
.
14.
Borgmeyer
,
B.
, and
Ma
,
H. B.
,
2007
, “
Experimental Investigation of Oscillating Motions in a Flat Plate Pulsating Heat Pipe
,”
ASME J. Heat Transfer
,
21
(
2
), pp.
405
409
.
15.
Thompson
,
S. M.
,
Ma
,
H. B.
,
Winholtz
,
R. A.
, and
Wilson
,
C.
,
2009
, “
Experimental Investigation of Three-Dimensional Flat-Plate Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
131
(
4
), p.
043210
.
16.
Thompson
,
S. M.
,
Cheng
,
P.
, and
Ma
,
H. B.
,
2011
, “
An Experimental Investigation of a Three-Dimensional Flat-Plate Oscillating Heat Pipe With Staggered Microchannels
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
3951
3959
.
17.
Smoot
,
C. D.
, and
Ma
,
H. B.
,
2014
, “
Experimental Investigation of a Three-Layer Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
136
(
5
), p.
051501
.
18.
Thompson
,
S. M.
,
Lu
,
H.
, and
Ma
,
H.
,
2015
, “
Thermal Spreading With Flat-Plate Oscillating Heat Pipes
,”
AIAA J. Thermophys. Heat Transfer
,
29
(
2
), pp.
338
345
.
19.
Ma
,
H. B.
,
Wilson
,
C.
,
Borgmeyer
,
B.
,
Park
,
K.
,
Yu
,
Q.
,
Choi
,
S. U. S.
, and
Tirumala
,
M.
,
2006
, “
Effect of a Nanofluid on the Heat Transport Capability in an Oscillating Heat Pipe
,”
Appl. Phys. Lett.
,
88
(
14
), p.
143116
.
20.
Ma
,
H. B.
,
Wilson
,
C.
,
Park
,
K.
,
Choi
,
U. S.
, and
Tirumala
,
M.
,
2006
, “
An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
128
(
11
), pp.
1213
1216
.
21.
Su
,
X.
,
Zhang
,
M.
,
Han
,
W.
, and
Guo
,
X.
,
2015
, “
Enhancement of Heat Transport in Oscillating Heat Pipe With Ternary Fluid
,”
Int. J. Heat Mass Transfer
,
87
(
8
), pp.
258
264
.
22.
Rittidech
,
S.
, and
Wannapakne
,
S.
,
2007
, “
Experimental Study of the Performance of a Solar Collector by Closed-End Oscillating Heat Pipe (CEOHP)
,”
Appl. Therm. Eng.
,
27
(
11–12
), pp.
1978
1985
.
23.
Arab
,
M.
,
Soltanieh
,
M.
, and
Shafii
,
M. B.
,
2012
, “
Experimental Investigation of Extra-Long Pulsating Heat Pipe Application in Solar Water Heaters
,”
Exp. Therm. Fluid Sci.
,
42
(
10
), pp.
6
15
.
24.
Khandekar
,
S.
, and
Gupta
,
A.
,
2007
, “
Embedded Pulsating Heat Pipe Radiator
,”
14th International Heat Pipe Conference
, Florianópolis, Brazil, Apr. 22–27, pp.
258
263
.
25.
Hemardi
,
V. A.
,
Gupta
,
A.
, and
Kandekar
,
S.
,
2011
, “
Thermal Radiators With Embedded Pulsating Heat Pipes: Infra-Red Thermography and Simulations
,”
Appl. Therm. Eng.
,
31
(
6–7
), pp.
1332
1346
.
26.
Pastukhov
,
V. G.
, and
Maydanik
,
Y. F.
,
2012
, “
Development and Experimental Investigation of a Heat-Transfer System on the Basis of a Loop and a Pulsating Heat Pipe
,”
16th International Heat Pipe Conference
, Lyon, France, May 20–24, pp.
255
260
.
27.
Miyazaki
,
Y.
,
Polasek
,
F.
, and
Akachi
,
H.
,
2000
, “
Oscillating Heat Pipe With Check Valves
,”
Sixth International Heat Pipe Symposium
, Chiang Mai, Thailand, Nov. 5–9, pp.
389
393
.
28.
Rittidech
,
S.
,
Pipatpaiboon
,
N.
, and
Terdtoon
,
P.
,
2007
, “
Heat-Transfer Characteristics of a Closed-Loop Oscillating Heat-Pipe With Check Valves
,”
Appl. Energy
,
84
(
5
), pp.
565
577
.
29.
Wannapakhe
,
S.
,
Rittidech
,
S.
,
Bubphachot
,
B.
, and
Wtanabe
,
O.
,
2009
, “
Heat Transfer Rate of a Closed-Loop Oscillating Heat Pipe With Check Valves Using Silver Nanofluid as Working Fluid
,”
J. Mech. Sci. Technol.
,
23
(
6
), pp.
1576
1582
.
30.
Bhuwakietkumjohn
,
N.
, and
Rittidech
,
S.
,
2010
, “
Internal Flow-Patterns on Heat Transfer Characteristics of a Closed-Loop Oscillating Heat-Pipe With Check Valves Using Ethanol and a Silver Nano-Ethanol Mixture
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1000
1007
.
31.
Thompson
,
S. M.
,
Ma
,
H. B.
, and
Wilson
,
C.
,
2011
, “
Investigation of a Flat-Plate Oscillating Heat Pipe With Tesla-Type Check Valves
,”
Exp. Therm. Fluid Sci.
,
35
(
7
), pp.
1265
1273
.
32.
de Vries
,
S. F.
,
Florea
,
D.
,
Homburg
,
F. G. A.
, and
Frijns
,
A. J. H.
,
2017
, “
Design and Operation of a Tesla-Type Valve for Pulsating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
105
(
2
), pp.
1
11
.
33.
Zhao
,
N.
,
Zhao
,
D.
, and
Ma
,
H. B.
,
2013
, “
Ultrasonic Effect on the Startup of an Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
135
(
7
), p.
074503
.
34.
Zhao
,
N.
,
Fu
,
B.
,
Ma
,
H.
, and
Su
,
F.
,
2015
, “
Ultrasonic Effect on the Heat Transfer Performance of Oscillating Heat Pipes
,”
ASME J. Heat Transfer
,
137
(
9
), p.
091014
.
35.
Kurzweg
,
U. H.
,
1986
, “
Heat Transfer Device for the Transport of Large Conduction Flux Without Net Mass Transfer
,” University Of Florida, Gainesville, FL, U.S. Patent No.
US4590993 A
.
36.
Zhang
,
Y.
, and
Faghri
,
A.
,
2002
, “
Heat Transfer in a Pulsating Heat Pipe With Open End
,”
Int. J. Heat Mass Transfer
,
45
(
4
), pp.
755
764
.
37.
Khandekar
,
S.
,
Panigrahi
,
K.
,
Lefevre
,
F.
, and
Bonjour
,
J.
,
2010
, “
Local Hydrodynamics of Flow in a Pulsating Heat Pipe: A Review
,”
Front. Heat Pipes
,
1
(
2
), p.
023003
.
38.
Das
,
S. P.
,
Nikolayev
,
V. S.
,
Lefevre
,
F.
,
Potier
,
B.
,
Khandekar
,
S.
, and
Bonjour
,
J.
,
2010
, “
Thermally Induced Two-Phase Oscillating Flow Inside a Capillary Tube
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
3905
3913
.
39.
Nikolayev
,
V. S.
,
2011
, “
A Dynamic Film Model of the Pulsating Heat Pipe
,”
ASME J. Heat Transfer
,
133
(
8
), p.
081504
.
40.
Mameli
,
M.
,
Marengo
,
M.
, and
Zinna
,
S.
,
2012
, “
Numerical Model of a Multi-Turn Closed Loop Pulsating Heat Pipe: Effects of the Local Pressure Losses Due to Meanderings
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
1036
1047
.
41.
Nikolayev
,
V. S.
,
2013
, “
Oscillatory Instability of the Gas-Liquid Meniscus in a Capillary Under the Imposed Temperature Difference
,”
Int. J. Heat Mass Transfer
,
64
(
9
), pp.
313
321
.
42.
Rao
,
M.
,
Lefevre
,
F.
,
Khandekar
,
S.
, and
Bonjour
,
J.
,
2015
, “
Heat and Mass Transfer Mechanisms of a Self-Sustained Thermally Driven Oscillating Liquid-Vapor Meniscus
,”
Int. J. Heat Mass Transfer
,
86
(
7
), pp.
519
530
.
43.
Manzoni
,
M.
,
Mameli
,
M.
,
de Falco
,
C.
,
Araneo
,
L.
,
Filippeschi
,
S.
, and
Marengo
,
M.
,
2016
, “
Non Equilibrium Lumped Parameter Model for Pulsating Heat Pipes: Validation in Normal and Hyper-Gravity Conditions
,”
Int. J. Heat Mass Transfer
,
97
(
6
), pp.
473
485
.
44.
Ma
,
H. B.
,
Hanlon
,
M. A.
, and
Chen
,
C. L.
,
2001
, “
An Investigation of Oscillation Motions in a Pulsating Heat Pipe
,”
ASME
Paper No. NHTC-2001-20149.
45.
Ma
,
H. B.
,
Borgmeyer
,
B.
,
Cheng
,
P.
, and
Zhang
,
Y.
,
2008
, “
Heat Transport Capability in an Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
130
(
8
), p.
081501
.
46.
Furukawa
,
M.
,
2014
, “
Rationalized Concise Descriptions of Fluid Motions in Oscillating/Pulsating Heat Pipe
,”
ASME J. Heat Transfer
,
136
(
9
), p.
092901
.
47.
Denington
,
R. J.
,
Koestel, A.
,
Saule, A. V.
,
Shure, R. I.
,
Stevens, G. T.
, and
Taylor, R. B.
,
1963
, “
Space Radiator Study
,” ASD-TDR-61-697, DDC No. AD-424-419, Prepared Under Contract No. AF33(616)-7368 by TAPCO, pp.
25
28
.
48.
Williams
,
J. L.
,
Keshock
,
E. G.
, and
Wiggins
,
C. L.
,
1973
, “
Development of a Direct Condensing Radiator for Use in a Spacecraft Vapor Compression Refrigeration System
,”
ASME J. Eng. Ind.
,
95
(
4
), pp.
1053
1064
.
49.
Taft
,
B. S.
,
Williams
,
A. D.
, and
Drolen
,
B. L.
,
2012
, “
Review of Pulsating Heat Pipe Working Fluid Selection
,”
AIAA J. Thermophys. Heat Transfer
,
26
(
4
), pp.
651
656
.
50.
Shao
,
W.
, and
Zhang
,
Y.
,
2011
, “
Thermally-Induced Oscillating Flow and Heat Transfer in an Oscillating Heat Pipe
,”
J. Enhanced Heat Transfer
,
18
(
3
), pp.
177
190
.
51.
Bajpai
,
A. K.
, and
Khandekar
,
S.
,
2012
, “
Thermal Transport Behavior of a Liquid Plug Moving Inside a Dry Capillary Tube
,”
Heat Pipe Sci. Technol.
,
3
(
2–4
), pp.
97
124
.
52.
Mehta
,
B.
, and
Khandekar
,
S.
,
2014
, “
Taylor Bubble-Train Flows and Heat Transfer in the Context of Pulsating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
79
(
12
), pp.
279
290
.
53.
Mehta
,
H. B.
, and
Banerjee
,
J.
,
2016
, “
Experimental Investigation on Thermo-Hydrodynamics of Continuous Taylor Bubble Flow Through Minichannel
,”
Int. J. Heat Mass Transfer
,
94
(
3
), pp.
119
137
.
54.
Yin
,
D.
,
Wang
,
H.
,
Ma
,
H. B.
, and
Ji
,
Y. L.
,
2016
, “
Operation Limitation of an Oscillating Heat Pipe
,”
Int. J. Heat Mass Transfer
,
94
(
3
), pp.
366
372
.
55.
Goodman
,
T. R.
,
1964
, “
Application of Integral Methods in Transient Nonlinear Heat Transfer
,”
Advances in Heat Transfer
, Vol.
1
,
T. F.
Irvine
, Jr.
, and
J. P.
Harnett
, eds.,
Academic Press
,
New York
, pp.
51
122
.
56.
Wallis
,
G. B.
,
1969
, “
Integral Analysis
,”
One-Dimensional Two-Phase Flow
,
McGraw-Hill
,
New York
, pp.
115
118
.
57.
Watson
,
E. J.
,
1983
, “
Diffusion in Oscillatory Pipe Flow
,”
J. Fluid Mech.
,
133
, pp.
233
244
.
58.
Aris
,
R.
,
1960
, “
On the Dispersion of a Solute in Pulsating Flow Through a Tube
,”
Proc. R. Soc. London A
,
259
(
1298
), pp.
370
376
.
59.
Smith
,
R.
,
1981
, “
A Delay-Diffusion Description for Contaminant Dispersion
,”
J. Fluid Mech.
,
105
, pp.
469
486
.
60.
Takahashi
,
I.
,
1995
, “
Axial Heat-Transfer Characteristics Enhanced by an Oscillatory Fluid in a Thin Tube
,”
Heat Transfer Jpn. Res.
,
23
(
6
), pp.
525
543
.
61.
McAdams
,
W. H.
,
1954
, “
Flow of Fluids
,”
Heat Transmission
,
3rd ed.
,
McGraw-Hill
,
New York
, pp.
140
164
.
62.
Furukawa
,
M.
,
2011
, “
Heat Transport by Inverse-Piezoelectric Driven Dream Pipe
,”
ASME J. Heat Transfer
,
133
(
10
), p.
101701
.
63.
Furukawa
,
M.
,
Morishita
,
M.
, and
Yokoyama
,
S.
,
2015
, “
Feasibility Study of Electromagnetic Driven Dream Pipe
,”
Int. J. Heat Mass Transfer
,
83
(
4
), pp.
212
221
.
You do not currently have access to this content.