A novel method that incorporates uncertainty quantification (UQ) into numerical simulations of heat transfer for a 9 × 9 square array of spent nuclear fuel (SNF) assemblies in a boiling water reactor (BWR) is presented in this paper. The results predict the maximum mean temperature at the center of the 9 × 9 BWR fuel assembly to be 462 K using a range of fuel burn-up power. Current related modeling techniques used to predict the heat transfer and the maximum temperature inside SNF assemblies rely on commercial codes and address the uncertainty in the input parameters by running separate simulations for different input parameters. The utility of leveraging polynomial chaos expansion (PCE) to develop a surrogate model that permits the efficient evaluation of the distribution of temperature and heat transfer while accounting for all uncertain input parameters to the model is explored and validated for a complex case of heat transfer that could be substituted with other problems of intricacy. UQ computational methods generated results that are encompassing continuous ranges of variable parameters that also served to conduct sensitivity analysis on heat transfer simulations of SNF assemblies with respect to physically relevant parameters. A two-dimensional (2D) model is used to describe the physical processes within the fuel assembly, and a second-order PCE is used to characterize the dependence of center temperature on ten input parameters.

References

References
1.
DOE
,
1987
, “
Characteristics of Spent Fuel, High-Level Waste, and Other Radioactive Wastes Which May Require Long-Term Isolation
,” Office of Civilian Radioactive Waste Management, Oak Ridge National Laboratory, Oak Ridge, TN, Technical Report No.
DOE RW-0184
.https://curie.ornl.gov/content/characteristics-spent-fuel-high-level-waste-and-other-radioactive-wastes-which-may-require
2.
Saling
,
J. H.
, and
Fentiman
,
W. A.
,
2002
,
Radioactive Waste Management
,
2nd ed.
,
Taylor and Francis
,
New York
.
3.
Greiner
,
M.
,
Araya
,
P.
,
Chalasani
,
N. R.
,
Li
,
J.
, and
Liu
,
Y.
,
2013
, “
Two-Dimensional CFD Simulations of a Square 8x8 Heater Rod Array in an Isothermal Enclosure Filled With Rarified Air
,”
International High-Level Radioactive Waste Management Conference
(
IHLRWMC
), Albuquerque, NM, April 28–May 2, pp.
831
840
.http://wolfweb.unr.edu/homepage/greiner/pubs/Fires/2013.IHLRWM.Conference.6857.pdf
4.
Greene
,
S.
,
Medford
,
J. S.
, and
Macy
,
S. A.
,
2013
, “
Storage and Transport Cask Data for Used Commercial Nuclear Fuel
,” Advanced Technology Insights LLC, Oak Ridge, TN, Technical Report No.
ATI-TR-13047
.https://curie.ornl.gov/content/storage-and-transport-cask-data-used-commercial-nuclear-fuel-2013-us-edition
5.
Kessler
,
J.
,
2010
, “
Industry Spent Fuel Storage Handbook
,” Electric Power Research Institute, Palo Alto, CA, Technical Report No.
1021048
https://curie.ornl.gov/content/industry-spent-fuel-storage-handbook-2.
6.
Saidi
,
M.
, and
Hosseini Abardeh
,
R.
,
2010
, “
Air Pressure Dependence of Natural-Convection Heat Transfer
,” World Congress on Engineering (
WCE
), London, June 30–July 2, pp.
1444
1447
.http://www.iaeng.org/publication/WCE2010/WCE2010_pp1444-1447.pdf
7.
NRC
,
2003
, “
Cladding Considerations for the Transportation and Storage of Spent Fuel
,” Spent Fuel Project Office Interim Staff Guidance-11, Revision 3, Nuclear Regulatory Commission, Washington, DC, Technical Report No.
ISG-11 R3
.https://www.nrc.gov/reading-rm/doc-collections/isg/isg-11R3.pdf
8.
Canaan
,
R. E.
, and
Klein
,
D. E.
,
1998
, “
A Numerical Investigation of Natural Convection Heat Transfer Within Horizontal Spent-Fuel Assemblies
,”
Nucl. Technol.
,
123
(
2
), pp.
193
208
.
9.
Araya
,
P. E.
, and
Greiner
,
M.
,
2009
, “
Benchmark of Natural Convection/Radiation Simulations Within an Enclosed Array of Horizontal Heated Rods
,”
Nucl. Technol.
,
167
(3), pp.
384
394
.
10.
Najm
,
H.
,
2009
, “
Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
35
52
.
11.
Cuta
,
J. M.
,
Suffield
,
S. R.
,
Fort
,
J. A.
, and
Adkins
,
H. E.
,
2013
, “
Thermal Performance Sensitivity Studies in Support of Material Modeling for Extended Storage of Used Nuclear Fuel
,” TRW Environmental Safety Systems, Inc., Las Vegas, NV, Report No.
PNNL-22646
.https://curie.ornl.gov/system/files/documents/not%20yet%20assigned/FCRD-UFD-2013-000257.pdf
12.
Bahney
,
R.
, and
Lotz
,
L. T.
, 1996, “
Spent Nuclear Fuel Effective Thermal Conductivity Report
,” U.S. Department of Energy, Las Vegas, NV, Technical Report No.
BBA000000-01717-5705-00010 Rev 00
.https://www.osti.gov/scitech/servlets/purl/778872
13.
Moore
,
R. S.
, and
Notz
,
K. J.
,
1989
, “
Physical Characteristics of GE [General Electric] BWR [Boiling-Water Reactor] Fuel Assemblies
,” Oak Ridge National Laboratory, Oak Ridge, TN, Techncial Report No.
ORNL/TM-10902
https://inis.iaea.org/search/search.aspx?orig_q=RN:21011100.
14.
Ade
,
B. J.
, and
Gauld
,
I. C.
,
2011
, “
Decay Heat Calculations for PWR and BWR Assemblies Fueled With Uranium and Plutonium Mixed Oxide Fuel Using Scale
,” Oak Ridge National Laboratory, Oak Ridge, TN, Technical Report No.
ORNL/TM-2011/290
https://info.ornl.gov/sites/publications/Files/Pub31857.pdf.
15.
Manzo
,
T.
,
Nacer
,
M.-H.
, and
Greiner
,
M.
,
2015
, “
Geometrically-Accurate-Three-Dimensional Simulations of a Used Nuclear Fuel Canister Filled With Helium
,”
ASME
Paper No. PVP2015-45851.
16.
Hyungjin
,
K.
,
Kwon
,
O. H.
,
Kang
,
G.-U.
, and
Lee
,
D.-G.
,
2014
, “
Comparisons of Prediction Methods for Peak Cladding Temperature and Effective Thermal Conductivity in Spent Fuel Assemblies of Transportation/Storage Casks
,”
Ann. Nucl. Energy
,
71
, pp.
427
435
.
17.
ANSYS
,
2016
, “
ANSYS Commercial Release 16.2 User-Manual
,” ANSYS Inc., Canonsburg, PA.
18.
Ghanem
,
R.
, and
Spanos
,
P.
,
1991
,
Stochastic Finite Elements: A Spectral Approach
.
Springer-Verlag
,
New York
.
19.
Salloum
,
M.
, and
Gharagozloo
,
P. E.
,
2014
, “
Empirical and Physics-Based Mathematical Models of Uranium Hydride Decomposition Kinetics With Quantified Uncertainty
,”
Chem. Eng. Sci.
,
116
, pp.
452
464
.
20.
Debusschere
,
B.
,
Safta
,
C.
,
Sargsyan
,
K.
,
Chowdhary
,
K.
,
Alexanderian
,
A.
,
Salloum
,
M.
,
Najm
,
H.
,
Knio
,
O.
,
Ghanem
,
R.
, and
Adalsteinsson
,
H.
,
2015
,
The Uncertainty Quantification Toolkit (UQTk)
,
1st ed.
,
Sandia National Laboratory
,
Albuquerque, NM
.
21.
Debusschere
,
B.
,
Najm
,
H. N.
,
Pebay
,
P. P.
,
Knio
,
O. M.
,
Ghanem
,
R. G.
, and
Le Maitre
,
O. P.
,
2005
, “
Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes
,”
SIAM J. Sci. Comput.
,
26
(
2
), pp.
698
719
.
22.
Ghanem
,
R.
, and
Higdon
,
D. O. H.
,
2017
,
Handbook of Uncertainty Quantification
, Vol.
1
,
Springer-Verlag
,
Cham, Switzerland
.
23.
Araya
,
P. E.
, and
Greiner
,
M.
,
2008
, “
CFD Simulations of an 8x8 Rod Array Inside of an Isothermal Enclosure Filled With a Rarefied Gas
,”
ASME
Paper No. PVP2008-61582.
24.
Greiner
,
M.
, and
Araya
,
P.
,
2007
, “
Two-Dimensional Simulations of Natural Convection/Radiation Heat Transfer for BWR Assembly Within Isothermal Enclosure
,”
Packag. Transp. Storage Secur. Radioact. Mater.
,
18
(
3
), pp.
171
179
.
25.
Hadj-Nacer
,
M.
,
Manzo
,
T.
,
Ho
,
M.
,
Graur
,
I.
, and
Greiner
,
M.
,
2015
, “
Phenomena Affecting Used Nuclear Fuel Cladding Temperatures During Vacuum Drying Operations
,”
International High-Level Radioactive Waste Management Conference
(
IHLRWM
), Charleston, SC, Apr. 12–16, pp. 501–508.http://cc.greydenpress.com/gp/CloudConferencing/CloudConferencingTemplate/Data/pdfs/12591.pdf
You do not currently have access to this content.