The increasing demand for designing effective cooling solutions in high power density electronic components has resulted in exploring advanced thermal management strategies. Over the past decade, phase-change cooling has received widespread recognition due to its ability to dissipate large heat fluxes while maintaining low temperature differences. In this paper, a radial flow boiling configuration through a central inlet was studied. This configuration is particularly suited for chip cooling application. Two heat transfer surfaces with (a) radial microchannels, and (b) offset strip fins were fabricated and their flow boiling performance with distilled water was obtained. Furthermore, the effect of the liquid flow rate on the boiling performance and enhancement mechanisms was also investigated in this study. At a flow rate of 240 mL/min, a maximum heat flux of 369 W/cm2 at a wall superheat of 49 °C and a pressure drop of 59 kPa was achieved with the radial microchannels, while the offset strip fins achieved a maximum heat flux of 618 W/cm2 at a wall superheat of 20 °C. Increasing the flow rate to 320 mL/min resulted in a heat flux of 897 W/cm2 demonstrating the potential of using a radial configuration for enhancing the boiling performance. The increase in flow cross-sectional area was shown to be responsible for the reduced pressure drop when compared to straight microchannel configurations. The high-speed imaging incorporated in each test provided valuable insight and understanding into the flow patterns and underlying mechanism in these geometries. With the ease of implementation, highly stable flow, and further optimization possibilities with different microchannel and taper configurations, the radial geometry is expected to provide significant performance enhancement well beyond a critical heat flux (CHF) of 1 kW/cm2.

References

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron. Device Lett.
,
2
(
5
), pp.
126
129
.
2.
Kandlikar
,
S. G.
,
2002
, “
Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels
,”
Exp. Therm. Fluid Sci.
,
26
(
2
), pp.
389
407
.
3.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2004
, “
An Experimental Investigation of Flow Boiling Characteristics of Water in Parallel Microchannels
,”
ASME J. Heat Transfer
,
126
(
4
), pp.
518
526
.
4.
Qu
,
W.
, and
Mudawar
,
I.
, “
Measurement and Prediction of Pressure Drop in Two-Phase Microchannel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
46
(
15
), pp.
2737
2753
.
5.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Segal
,
Z.
, and
Ziskind
,
G.
,
2002
, “
A Uniform Temperature Heat Sink for Cooling of Electronic Devices
,”
Int. J. Heat Mass Transfer
,
45
(
16
), pp.
3275
3286
.
6.
Kandlikar
,
S. G.
,
Kuan
,
W. K.
,
Willistein
,
D. A.
, and
Borrelli
,
J.
,
2006
, “
Experimental Evaluation of Pressure Drop Elements and Fabricated Nucleation Sites for Satbilizing Flow Boiling in Minichannels and Microchannels
,”
ASME J. Heat Transfer
,
128
(
4
), pp.
389
396
.
7.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2005
, “
Numerical Study of the Effect of Inlet Constriction on Bubble Growth during Flow Boiling in Microchannels
,”
ASME
Paper No. ICMM2005-75143.
8.
Lu
,
C. T.
, and
Pan
,
C.
,
2011
, “
Convective Boiling in a Parallel Microchannel Heat Sink with a Diverging Cross Section and Artificial Nucleation Sites
,”
Exp. Therm. Fluid Sci.
,
35
(
5
), pp.
810
815
.
9.
Balasubramanian
,
K.
,
Lee
,
P. S.
,
Teo
,
C. J.
, and
Chou
,
S. K.
,
2013
, “
Flow Boiling Heat Transfer and Pressure Drop in Stepped Fin Microchannels
,”
Int. J. Heat Mass Transfer
,
67
, pp.
234
252
.
10.
Cooke
,
D.
, and
Kandlikar
,
S. G.
,
2012
, “
Effect of Open Microchannel Geometry on Pool Boiling Enhancement
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
1004
1013
.
11.
Kandlikar
,
S. G.
,
Widger
,
T.
,
Kalani
,
A.
, and
Mejia
,
V.
,
2013
, “
Enhanced Flow Boiling Over Open Microchannels With Uniform and Tapered Gap Manifolds
,”
ASME J. Heat Transfer
,
135
(
6
), p.
061401
.
12.
Kalani
,
A.
, and
Kandlikar
,
S. G.
,
2013
, “
Experimental Investigation of Flow Boiling Performance of Open Microchannels With Uniform and Tapered Manifolds (OMM)
,”
ASME
Paper No. HT2013-17441.
13.
Kalani
,
A.
, and
Kandlikar
,
S. G.
,
2015
, “
Combining Liquid Inertia With Pressure Recovery From Bubble Expansion for Enhanced Flow Boiling
,”
Appl. Phys. Lett.
,
107
(
18
), p.
181601
.
14.
Kalani
,
A.
, and
Kandlikar
,
S. G.
,
2015
, “
Flow Patterns and Heat Transfer Mechanisms During Flow Boiling Over Open Microchannels in Tapered Manifold (OMM)
,”
Int. J. Heat Mass Transfer
,
89
, pp.
494
504
.
15.
Kalani
,
A.
, and
Kandlikar
,
S. G.
,
2015
, “
Effect of Taper on Pressure Recovery During Flow Boiling in Open Microchannels With Manifold Using Homogeneous Flow Model
,”
Int. J. Heat Mass Transfer
,
83
, pp.
109
117
.
16.
Kalani
,
A.
, and
Kandlikar
,
S. G.
,
2014
, “
Evaluation of Pressure Drop Performance During Enhanced Flow Boiling in Open Microchannels With Tapered Manifolds
,”
ASME J. Heat Transfer
,
136
(5), p. 051502.
17.
Kalani
,
A.
, and
Kandlikar
,
S. G.
,
2013
, “
Enhanced Pool Boiling with Ethanol at Subatmospheric Pressures for Electronics Cooling
,”
ASME J. Heat Transfer
,
135
(
11
), p.
111002
.
18.
Niklas
,
M.
, and
Favre-Marinet
,
M.
,
2005
, “
An Experimental Study and Numerical Modeling of the Flow in a Network of Triangular Microchannels
,”
Heat Transfer Eng.
,
26
(
8
), pp.
15
23
.
19.
Chai
,
L.
,
Xia
,
G.
, and
Qi
,
J.
,
2012
, “
Experimental and Numerical Study of Flow and Heat Transfer in Trapezoidal Microchannels
,”
Heat Transfer Eng.
,
33
(
11
), pp.
972
981
.
20.
Sui
,
Y.
,
Lee
,
P. S.
, and
Teo
,
C. J.
,
2011
, “
An Experimental Study of Flow Friction and Heat Transfer in Wavy Microchannels With Rectangular Cross Section
,”
Int. J. Therm. Sci.
,
50
(
12
), pp.
2473
2482
.
21.
Krishnamurthy
,
S.
, and
Peles
,
Y.
,
2010
, “
Flow Boiling Heat Transfer on Micro Pin Fins Entrenched in a Microchannel
,”
ASME J. Heat Transfer
,
132
(
4
), p.
041007
.
22.
Yuan
,
M.
,
Wei
,
J.
,
Xue
,
Y.
, and
Fang
,
J.
, “
Subcooled Flow Boiling Heat Transfer of FC-72 From Silicon Chips Fabricated With Micro Pin Fins
,”
Int. J. Therm. Sci.
,
48
(
7
), pp.
1416
1422
.
23.
Reeser
,
A.
,
Bar-Cohen
,
A.
, and
Hetsroni
,
G.
,
2014
, “
High Quality Flow Boiling Heat Transfer and Pressure Drop in Microgap Pin Fin Arrays
,”
Int. J. Heat Mass Transfer
,
78
, pp.
974
985
.
24.
Wang
,
Y.
, and
Peles
,
Y.
,
2015
, “
Subcooled Flow Boiling in a Microchannel With a Pin Fin and a Liquid Jet in Crossflow
,”
Int. J. Heat Mass Transfer
,
86
, pp.
165
173
.
25.
McNeil
,
D. A.
,
Raeisi
,
A. H.
,
Kew
,
P. A.
, and
Hamed
,
R. S.
,
2014
, “
An Investigation Into Flow Boiling Heat Transfer and Pressure Drop in a Pin–finned Heat Sink
,”
Int. J. Multiph. Flow
,
67
(Supplement), pp.
65
84
.
26.
Mandrusiak
,
G. D.
, and
Carey
,
V. P.
,
1989
, “
Convective Boiling in Vertical Channels With Different Offset Strip Fin Geometries
,”
ASME J. Heat Transfer
,
111
(
1
), pp.
156
165
.
27.
Zhang
,
M.
, and
Lian
,
K.
,
2008
, “
Using Bulk Micromachined Structures to Enhance Pool Boiling Heat Transfer
,”
Microsyst. Technol.
,
14
(
9–11
), pp.
1499
1505
.
28.
Ranganayakulu
,
C.
, and
Kabelac
,
S.
,
2015
, “
Boiling of R134a in a Plate-Fin Heat Exchanger Having Offset Fins
,”
ASME J. Heat Transfer
,
137
(
12
), p.
121002
.
29.
Zhuan
,
R.
, and
Wang
,
W.
,
2013
, “
Boiling Heat Transfer Characteristics in a Microchannel Array Heat Sink With Low Mass Flow Rate
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
65
74
.
30.
Kim
,
B.
, and
Sohn
,
B.
,
2006
, “
An Experimental Study of Flow Boiling in a Rectangular Channel With Offset Strip Fins
,”
Int. J. Heat Fluid Flow
,
27
(
3
), pp.
514
521
.
31.
Pulvirenti
,
B.
,
Matalone
,
A.
, and
Barucca
,
U.
,
2010
, “
Boiling Heat Transfer in Narrow Channels With Offset Strip Fins: Application to Electronic Chipsets Cooling
,”
Appl. Therm. Eng.
,
30
(
14–15
), pp.
2138
2145
.
32.
Zhu
,
Y.
,
Antao
,
D.
,
Chu
,
K.-H.
,
Chen
,
S.
,
Hendricks
,
T.
,
Zhang
,
T.
, and
Wang
,
E.
,
2016
, “
Surface Structure Enhanced Microchannel Flow Boiling
,”
ASME J. Heat Transfer
,
138
(
9
), p.
091501
.
33.
Pence
,
D.
, and
Enfield
,
K.
, eds.,
2004
,
Inherent Benefits in Microscale Fractal-Like Devices for Enhanced Transport Phenomena
,
WIT
,
Southampton, UK
.
34.
Apreotesi
,
M.
,
Pence
,
D.
, and
Liburdy
,
J.
,
2007
, “
Vapor Extraction From Flow Boiling in a Fractal-like Branching Heat Sink
,”
ASME
Paper No. IPACK2007-33423.
35.
Ruiz
,
M.
,
Kunkle
,
C. M.
,
Padilla
,
J.
, and
Carey
,
V. P.
,
2015
, “
Boiling Heat Transfer Performance in a Spiraling Radial Inflow Microchannel Cold Plate
,”
ASME
Paper No. ICNMM2015-48406.
36.
Schultz
,
M.
,
Yang
,
F.
,
Colgan
,
E.
,
Polastre
,
R.
,
Dang
,
B.
,
Tsang
,
C.
,
Gaynes
,
M.
,
Parida
,
P.
,
Knickerbocker
,
J.
, and
Chainer
,
T.
,
2015
, “
Embedded Two-Phase Cooling of Large 3D Compatible Chips With Radial Channels
,”
ASME
Paper No. IPACK2015-48348.
37.
Recinella
,
A.
,
Kalani
,
A.
, and
Kandlikar
,
S.
,
2016
, “
Enhanced Flow Boiling Heat Transfer Using Radial Microchannels
,”
ASME
Paper No. ICNMM2016-7975.
38.
Harirchian
,
T.
, and
Garimella
,
S. V.
,
2008
, “
Flow Patterns During Convective Boiling in Microchannels
,”
ASME J. Heat Transfer
,
130
(
8
), p.
080909
.
You do not currently have access to this content.