It is a common practice to use ideal thermal boundary conditions to investigate natural convection. These correspond to very good conducting walls and to very bad conducting walls. In particular, this has been the case in natural convection of viscoelastic fluids. In this paper, these conditions are generalized by taking into account the finite thermal conductivities and thicknesses of the walls in the natural convection of a viscoelastic Jeffreys fluid heated from below. The goal is to present more realistic results related to experimental conditions. The critical Rayleigh number Rc, the frequency of oscillation ωc, and the wavenumber kc have been plotted varying the properties of the walls from the case of very good thermal conductivity to very poor thermal conductivity. In order to understand the convective phenomena, two parameters are fixed and the other one varied among the nondimensional relaxation time F, the relative retardation time E, and the Prandtl number Pr of the viscoelastic fluid. The role of the relative retardation time E on the thermal instability is discussed in detail.

References

References
1.
Braun
,
D.
,
2004
, “
PCR by Thermal Convection
,”
Mod. Phys. Lett. B
,
18
(
16
), pp.
775
784
.
2.
Mast
,
C. B.
, and
Braun
,
D.
,
2010
, “
Thermal Trap for DNA Replication
,”
Phys. Rev. Lett.
,
104
(
18
), p.
188102
.
3.
Mast
,
C. B.
,
Schink
,
S.
,
Gerland
,
U.
, and
Braun
,
D.
,
2013
, “
Escalation of Polymerization in a Thermal Gradient
,”
Proc. Nat. Acad. Sci.
,
110
(
20
), pp.
8030
8035
.
4.
Li
,
M.
,
Xu
,
S.
, and
Kumacheva
,
E.
,
2000
, “
Convection in Polymeric Fluids Subjected to Vertical Temperature Gradients
,”
Macromolecules
,
33
(
13
), pp.
4972
4978
.
5.
Nejati
,
I.
,
Dietzel
,
M.
, and
Hardt
,
S.
,
2016
, “
Exploiting Cellular Convection in a Thick Liquid Layer to Pattern a Thin Polymer Film
,”
Appl. Phys. Lett.
,
108
(
5
), p.
051604
.
6.
Bassou
,
N.
, and
Rharbi
,
Y.
,
2009
, “
Role of Bénard—Marangoni Instabilities During Solvent Evaporation in Polymer Surface Corrugations
,”
Langmuir
,
25
(
1
), pp.
624
632
.
7.
Janes
,
D. W.
,
Katzenstein
,
J. M.
,
Shanmuganathan
,
K.
, and
Ellison
,
C. J.
,
2013
, “
Directing Convection to Pattern Thin Polymer Films
,”
J. Poly. Sci.
,
51
(
7
), pp.
535
545
.
8.
Metcalfe
,
G. P.
, and
Behringer
,
R. P.
,
1990
, “
Critical Rayleigh Numbers for Cryogenic Experiments
,”
J. Low Temp. Phys.
,
78
(
3–4
), pp.
231
246
.
9.
Cerisier
,
P.
,
Rahal
,
A.
,
Cordonnier
,
J.
, and
Lebon
,
G.
,
1998
, “
Thermal Influence of Boundaries on the Onset of Rayleigh–Bénard Convection
,”
Int. J. Heat Mass Transfer
,
41
(
21
), pp.
3309
3320
.
10.
Howle
,
L. E.
,
2000
, “
The Effect of Boundary Properties on Controlled Rayleigh–Bénard Convection
,”
J. Fluid Mech.
,
411
, pp.
39
58
.
11.
Vest
,
C. M.
, and
Arpaci
,
V. S.
,
1969
, “
Overstability of a Viscoelastic Fluid Layer Heated From below
,”
J. Fluid Mech.
,
36
(
3
), pp.
613
623
.
12.
Li
,
Z.
, and
Khayat
,
R. E.
,
2005
, “
Three-Dimensional Thermal Convection of Viscoelastic Fluids
,”
Phys. Rev. E
,
71
(
6 Pt 2
), p.
066305
.
13.
Pérez-Reyes
,
I.
, and
Dávalos-Orozco
,
L. A.
,
2011
, “
Effect of Thermal Conductivity and Thickness of the Walls in the Convection of a Viscoelastic Maxwell Fluid Layer
,”
Int. J. Heat Mass Transfer
,
54
(
23–24
), pp.
5020
5029
.
14.
Dávalos-Orozco
,
L. A.
,
2012
,
Viscoelasticity: From Theory to Biological Applications
,
Juan de
Vicente
, ed.,
InTech
,
Rijeka, Croatia
, pp.
3
32
.
15.
Hernández-Hernández
,
I. J.
, and
Dávalos-Orozco
,
L. A.
,
2015
, “
Competition Between Stationary and Oscillatory Viscoelastic Thermocapillary Convection of a Film Coating a Thick Wall
,”
Int. J. Therm. Sci.
,
89
, pp.
164
173
.
16.
Chandrasekhar
,
S.
,
1981
,
Hydrodynamic and Hydromagnetic Stability
,
Dover Publications
,
New York
, p.
10014
.
17.
Takashima
,
M.
,
1972
, “
Thermal Instability in a Viscoelastic Fluid Layer. I
,”
J. Phys. Soc. Jpn.
,
33
(
2
), pp.
511
518
.
18.
Sokolov
,
M.
, and
Tanner
,
R. I.
,
1972
, “
Convective Instability of a General Viscoelastic Fluid Heated From Below
,”
Phys. Fluid
,
15
(
4
), pp.
534
539
.
19.
Martínez–Mardones
,
J.
, and
Pérez–García
,
C.
,
1990
, “
Linear Instability in Viscoelastic Fluid Convection
,”
J. Phys.: Condens. Matter
,
2
(
5
), pp.
1281
1290
.
20.
Kolkka
,
R. W.
, and
Ierley
,
G. R.
,
1987
, “
On the Convected Linear Stability of a Viscoelatic Oldroyd B Fluid Heated From Below
,”
J. Non-Newtonian Fluid Mech.
,
25
(2), pp. 209–237.
21.
Kolodner
,
P.
,
1998
, “
Oscillatory Convection in Viscoelastic DNA Suspensions
,”
J. Non-Newtonian Fluid Mech.
,
75
(
2–3
), pp.
167
192
.
22.
Klotz
,
L. C.
, and
Zimm
,
B. H.
,
1972
, “
Size of DNA Determined by Viscoelastic Measurements: Results on Bacteriophages, Bacillus Subtilis and Escherichia Coli
,”
J. Mol. Biol.
,
72
(
3
), pp.
779
800
.
23.
Chapman
,
C. J.
, and
Proctor
,
M. R. E.
,
1980
, “
Nonlinear Rayleigh–Bénard Convection Between Poorly Conducting Boundaries
,”
J. Fluid Mech.
,
101
(
4
), pp.
759
782
.
You do not currently have access to this content.