A series of tests were performed for the pulsating jet impingement heat transfer by varying the Reynolds number (5000 ≤ Re ≤ 20,000), operation frequency (10 Hz ≤ f ≤ 25 Hz), and dimensionless nozzle-to-surface distance (1≤H/d≤8) while fixing the duty cycle (DC) = 0.5(280 measurement data in total). Specific attention was paid to examine the relationship between the pulsating jet impingement and the steady jet impingement. By using a modified Strouhal number (Sr(H/d)), the test data are analyzed according to three classifications of the enhancement factors a = Nupulsation jet/Nusteady jet (such as a ∈ (Min,0.899), a ∈ (0.95, 1.049) and a ∈ (1.1, Max)). The results show that the identification of pulsating jet impingement in related to the steady jet impingement is suitable by using the modified Strouhal number (Sr(H/d)). Within the scope of this study, the most possibilities for the heat transfer enhancement by using pulsating jet impingement are suggested as the following conditions: Re ≤ 7500 and Sr(H/d) ≥ 0.04, Re ≥ 17500, and 0.01 ≤ Sr(H/d) ≤ 0.03; 10 Hz ≤ f ≤ 20 Hz and Sr(H/d) ≥ 0.04; H/d ≥ 6 and most of current Sr(H/d). While under such conditions, 7500 ≤ Re ≤ 15,000 and Sr(H/d) ≤ 0.02; f ≥ 20 Hz and Sr(H/d) ≤ 0.04; H/d ≤ 2 and Sr(H/d) ≤ 0.02, the pulsating jet impingement makes the heat transfer weaker than the steady jet impingement more obviously.

References

References
1.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
,
13
, pp.
1
60
.
2.
Jambunathan
,
K.
,
Lai
,
E.
, and
Moss
,
M. A.
,
1992
, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
.
3.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
(
2
), pp.
111
134
.
4.
Weigand
,
B.
, and
Spring
,
S.
,
2011
, “
Multiple Jet Impingement—A Review
,”
Heat Transfer Res.
,
42
(
2
), pp.
101
142
.
5.
Zumbrunnen
,
D. A.
, and
Aziz
,
M.
,
1993
, “
Convective Heat Transfer Enhancement Due to Intermittency in an Impinging Jet
,”
ASME J. Heat Transfer
,
115
(
1
), pp.
91
98
.
6.
Liu
,
T.
, and
Sullivan
,
J. P.
,
1996
, “
Heat Transfer and Flow Structures in an Excited Circular Impinging Jet
,”
Int. J. Heat Mass Transfer
,
39
(
17
), pp.
3695
3706
.
7.
Pavlova
,
A.
, and
Amitay
,
M.
,
2006
, “
Electronic Cooling With Synthetic Jet Impingement
,”
ASME J. Heat Transfer
,
128
(
9
), pp.
897
907
.
8.
Valiorgue
,
P.
,
Persoons
,
T.
,
McGuinn
,
A.
, and
Murray
,
D. B.
,
2009
, “
Heat Transfer Mechanisms in an Impinging Synthetic Jet for a Small Jet-to-Surface Spacing
,”
Exp. Therm. Fluid Sci.
,
33
(
4
), pp.
597
603
.
9.
Tan
,
X. M.
,
Zhang
,
J. Z.
,
Yong
,
S.
, and
Xie
,
G. N.
,
2015
, “
An Experimental Investigation on Comparison of Synthetic and Continuous Jets Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
90
, pp.
227
238
.
10.
Carlomagno
,
G. M.
, and
Ianiro
,
A.
,
2014
, “
Thermo-Fluid-Dynamics of Submerged Jets Impinging at Short Nozzle-to-Plate Distance: A Review
,”
Exp. Thermal Fluid Science
,
58
, pp.
15
35
.
11.
Janetzke
,
T.
, and
Nitsche
,
W.
,
2009
, “
Time Resolved Investigation on Flow Field and quasi wall stress of an Impingement Configuration With Pulsating Jets by Means of High Speed PIV and a Surface Hot Wire Array
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
877
885
.
12.
Ghadi
,
S.
,
Esmailpour
,
K.
,
Hosseinalipour
,
S. M.
, and
Mujumdar
,
A.
,
2016
, “
Experimental Study of Formation and Development of Coherent Vortical Structures in Pulsed Turbulent Impinging Jet
,”
Exp. Therm. Fluid Sci.
,
74
, pp.
382
389
.
13.
Yadav
,
H.
,
Srivastava
,
A.
, and
Agrawal
,
A.
,
2016
, “
Characterization of Pulsating Submerged Jet-a Particle Image Velocimetry Study
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
1
), p.
011014
.
14.
Sheriff
,
H. S.
, and
Zumbrunnen
,
D. A.
,
1994
, “
Effect of Flow Pulsations on the Cooling Effectiveness of an Impinging Jet
,”
ASME J. Heat Transfer
,
116
(
4
), pp.
886
895
.
15.
Azevedo
,
L. F. A.
,
Webb
,
B. W.
, and
Queiroz
,
M.
,
1994
, “
Pulsed Air Jet Impingement Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
8
(
3
), pp.
206
213
.
16.
Mladin
,
E. C.
, and
Zumbrunnen
,
D. A.
,
1997
, “
Local Convective Heat Transfer to Submerged Pulsating Jets
,”
Int. J. Heat Mass Transfer
,
40
(
14
), pp.
3305
3321
.
17.
Hofmann
,
H. M.
,
Movileanu
,
D. L.
,
Kind
,
M.
, and
Martin
,
H.
,
2007
, “
Influence of a Pulsation on Heat Transfer and Flow Structure in Submerged Impinging Jets
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3638
3648
.
18.
Hewakandamby
,
B. N.
,
2009
, “
A Numerical Study of Heat Transfer Performance of Oscillatory Impinging Jets
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
396
406
.
19.
Persoons
,
T.
,
Balgazin
,
K.
,
Brown
,
K.
, and
Murray
,
D. B.
,
2013
, “
Scaling of Convective Heat Transfer Enhancement Due to Flow Pulsation in an Axisymmetric Impinging Jet
,”
ASME J. Heat Transfer
,
135
(
11
), p.
111012
.
20.
Mohammadpour
,
J.
,
Rajabi-Zargarabadi
,
M.
,
Mujumdar
,
A. S.
, and
Ahmadi
,
H.
,
2014
, “
Effect of Intermittent and Sinusoidal Pulsed Flows on Impingement Heat Transfer From a Concave Surface
,”
Int. J. Therm. Sci.
,
76
, pp.
118
127
.
21.
Marcum
,
W. R.
,
Cadell
,
S. R.
, and
Ward
,
C.
,
2015
, “
The Effect of Jet Location and Duty Cycle on the Fluid Mechanics of an Unconfined Free Jet and Its Heat Transfer on an Impinging Plate
,”
Int. J. Heat Mass Transfer
,
88
, pp.
470
480
.
22.
Mladin
,
E. C.
,
1995
,
Instantaneous Convective Heat Transfer to Pulsating Submerged Jets
,
Clemson University
, Clemson, SC.
23.
Behera
,
R. C.
,
Dutta
,
P.
, and
Srinivasan
,
K.
,
2007
, “
Numerical Study of Interrupted Impinging Jets for Cooling of Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
2
), pp.
275
284
.
24.
Janetzke
,
T.
,
Nitsche
,
W.
, and
Täge
,
J.
,
2008
, “
Experimental Investigations of Flow Field and Heat Transfer Characteristics Due to Periodically Pulsating Impinging Air Jets
,”
Heat Mass Transfer
,
45
(
2
), pp.
193
206
.
25.
Alimohammadi
,
S.
,
Dinneen
,
P.
,
Persoons
,
T.
, and
Murray
,
D. B.
,
2014
, “
Thermal Management Using Pulsating Jet Cooling Technology
,”
J. Phys.: Conf. Ser.
,
525
, p.
012011
.
26.
Alimohammadi
,
S.
,
Murray
,
D. B.
, and
Persoons
,
T.
,
2015
, “
On the Numerical-Experimental Analysis and Scaling of Convective Heat Transfer to Pulsating Impinging Jets
,”
Int. J. Therm. Sci.
,
98
, pp.
296
311
.
27.
Esmailpour
,
K.
,
Hosseinalipour
,
M.
,
Bozorgmehr
,
B.
, and
Mujumdar
,
A. S.
,
2015
, “
A Numerical Study of Heat Transfer in a Turbulent Pulsating Impinging Jet
,”
Can. J. Chem. Eng.
,
93
(
5
), pp.
959
969
.
28.
Pakhomov
,
M. A.
, and
Terekhov
,
V. I.
,
2015
, “
Numerical Study of Fluid Flow and Heat Transfer Characteristics in an Intermittent Turbulent Impinging round Jet
,”
Int. J. Therm. Sci.
,
87
, pp.
85
93
.
29.
Middelberg
,
G.
, and
Herwig
,
H.
,
2009
, “
Convective Heat Transfer Under Unsteady Impinging Jets: The Effect of the Shape of the Unsteadiness
,”
Heat Mass Transfer
,
45
(
12
), pp.
1519
1532
.
30.
Geng
,
L. P.
,
Zheng
,
C. B.
, and
Zhou
,
J. W.
,
2015
, “
Heat Transfer Characteristics of Impinging Jets: The Influence of Unsteadiness With Different Waveforms
,”
Int. Commun. Heat Mass Transfer
,
66
, pp.
105
113
.
31.
Carlomagno
,
G. M.
, and
Cardone
,
G.
,
2010
, “
Infrared Thermography for Convective Heat Transfer Measurements
,”
Exp. Fluids
,
49
(
6
), pp.
1187
1218
.
32.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
33.
Violato
,
D.
,
Ianiro
,
A.
, and
Cardone
,
G.
,
2012
, “
Three-Dimensional Vortex Dynamics and Convective Heat Transfer in Circular and Chevron Impinging Jets
,”
Int. J. Heat Fluid Flow
,
37
, pp.
22
36
.
You do not currently have access to this content.