This paper presents a numerical investigation of the film-cooling performance of a kind of diffusion hole with a fusiform cross section. Relative to the rectangular diffusion hole, the up- and/or downstream wall of the fusiform diffusion hole is outer convex. Under the same metering section area, six fusiform diffusion holes were divided into two groups with cross-sectional widths of W = 1.7D and W = 2.0D, respectively. Three fusiform cross section shapes in each group included only downstream wall outer convex, only upstream wall outer convex, or a combination of both. Simulations were performed in a flat plate model using a 3D steady computational fluid dynamics method under an engine-representative condition. The simulation results showed that the fusiform diffusion hole with only an outer convex upstream wall migrates the coolant laterally toward the hole centerline, and then forms or enhances a tripeak effectiveness pattern. Conversely, the fusiform diffusion hole with an outer convex downstream wall intensely expands the coolant to the hole two sides, and results in a bipeak effectiveness pattern, regardless of the upstream wall shape. Compared with the rectangular diffusion holes, the fusiform diffusion holes with only an upstream wall outer convex significantly increase the overall effectiveness at high blowing ratios. The increased magnitude is approximately 20% for the hole of W = 1.7D at M = 2.5. Besides, the fusiform diffusion holes with an outer convex upstream wall increase the discharge coefficient about 5%, within the moderate to high blowing ratio range.

References

References
1.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film Cooling Technology
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
441
453
.
2.
Bunker
,
R. S.
,
2010
, “
Film Cooling: Breaking the Limits of Diffusion Shaped Holes
,”
Heat Transfer Res.
,
41
(
6
), pp.
627
650
.
3.
Haven
,
B. A.
, and
Kurosaka
,
M.
,
1997
, “
Kidney and Anti-Kidney Vortices in Crossflow Jets
,”
J. Fluid Mech.
,
352
, pp.
27
64
.
4.
Haven
,
B. A.
,
Yamagata
,
D. K.
, and
Kurosaka
,
M.
,
1997
, “
Anti-Kidney Pair of Vortices in Shaped Holes and Their Influence on Film Cooling Effectiveness
,”
ASME
Paper No. 97-GT-45.
5.
Takahashi
,
H.
,
Nuntadusit
,
C.
,
Kimoto
,
H.
,
Ishida
,
H.
,
Ukai
,
T.
, and
Takeishi
,
K.
,
2000
, “
Characteristics of Various Film Cooling Jets Injected in a Conduit
,”
International Symposium on Heat Transfer in Gas Turbine Systems
(Turbine 2000), Izmir, Turkey, Aug. 13–18, pp.
76
78
.
6.
Bruce-Black
,
J. E.
,
Davidson
,
F. T.
, and
Johns
,
D. R.
,
2011
, “
Practical Slot Configurations for Turbine Film Cooling Applications
,”
ASME J. Turbomach.
,
133
(
3
), p.
031020
.
7.
Shalash
,
K. M.
,
El-Gabry
,
L. A.
, and
El-Azm
,
M. M. A.
,
2014
, “
Investigations of a Novel Discrete Slot Film Cooling Scheme
,”
ASME
Paper No. GT2014-26019.
8.
Issakhanian
,
E.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2016
, “
Film Cooling Effectiveness Improvements Using a Nondiffusing Oval Hole
,”
ASME J. Tubomach.
,
138
(
4
), p.
041004
.
9.
Ajersch
,
P.
,
Zhou
,
J.
,
Ketler
,
S.
,
Salcudean
,
M.
, and
Gartshore
,
I.
,
1997
, “
Multiple Jets in a Crossflow: Detailed Measurements and Numerical Simulations
,”
ASME J. Turbomach.
,
119
(
2
), pp.
330
342
.
10.
Baheri
,
S.
,
Tabrizi
,
S. P. A.
, and
Jubran
,
B. A.
,
2008
, “
Film Cooling Effectiveness From Trenched Shaped and Compound Holes
,”
Heat Mass Transfer
,
44
(
8
), pp.
989
998
.
11.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
118
(
4
), pp.
807
813
.
12.
Harrison
,
K.
, and
Bogard
,
D.
,
2008
, “
Comparison of RANS Turbulence Models for Prediction of Film Cooling Performance
,”
ASME
Paper No. GT2008-51423.
13.
Hassan
,
J. S.
, and
Yavuzkurt
,
S.
,
2006
, “
Comparison of Four Different Two-Equation Models of Turbulence in Predicting Film Cooling Performance
,”
ASME
Paper No. GT2006-90860.
14.
Colban
,
W.
,
Thole
,
K. A.
, and
Handler
,
M.
,
2007
, “
Experimental and Computational Comparisons of Fan-Shaped Film Cooling on a Turbine Vane Surface
,”
ASME J. Turbomach.
,
129
(
1
), pp.
23
31
.
15.
Silieti
,
M.
,
Kassab
,
A. J.
, and
Divo
,
E.
,
2009
, “
Film Cooling Effectiveness: Comparison of Adiabatic and Conjugate Heat Transfer CFD Models
,”
Int. J. Therm. Sci.
,
48
(
12
), pp.
2237
2248
.
16.
Yang
,
X.
,
Liu
,
Z.
, and
Feng
,
Z.
,
2015
, “
Numerical Evaluation of Novel Shaped Holes for Enhancing Film Cooling Performance
,”
ASME J. Heat Transfer
,
134
(
7
), p.
071701
.
17.
Montomoli
,
F.
,
Ammaro
,
A. D.
, and
Uchida
,
S.
,
2013
, “
Numerical and Experimental Investigation of a New Film Cooling Geometry With High P/D Ratio
,”
Int. J. Heat Mass Transfer
,
66
, pp.
366
375
.
18.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.
19.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
549
556
.
20.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Free-Stream Effects on the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), p.
061007
.
21.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Effect of Geometry Variations on the Cooling Performance of Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), p.
061008
.
22.
An
,
B.-T.
,
Liu
,
J.-J.
, and
Zhou
,
S.-J.
,
2017
, “
Geometrical Parameter Effects on Film Cooling Effectiveness of Rectangular Diffusion Holes
,”
ASME J. Tubomach.
,
139
(
8
), p.
081010
.
23.
An
,
B.-T.
, and
Liu
,
J.-J.
,
2017
, “
Numerical Investigation on Diffusion Slot Hole With Various Cross-Sectional End Shapes
,”
ASME J. Heat Transfer
,
139
(
9
), p.
091703
.
24.
Aghasi
,
P.
,
Gutmark
,
E.
, and
Munday
,
D.
,
2016
, “
Dependence of Film Cooling Effectiveness on 3D Printed Cooling Holes
,”
ASME
Paper No. GT2016-56698.
25.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Discharge Coefficient Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Tubomach.
,
120
(
3
), pp.
557
563
.
You do not currently have access to this content.