This paper investigates frost formation on a flat horizontal surface, with humid air flowing over the surface and a cold liquid desiccant flowing below the surface. Two different surfaces, a semipermeable membrane and an impermeable plate, are tested. The condensation/frosting limit, that is, the lowest air humidity ratio, Wair, at a constant liquid temperature, Tliq, or the highest Tliq at a constant Wair that leads to condensation/frosting, is determined for each surface. The main aim of this study is to find the effect of moisture transfer through the semipermeable membrane on the condensation/frosting limit. It is found that the semipermeable membrane has a lower condensation/frosting limit, due to the moisture transfer through the semipermeable membrane, which dehumidifies the air flow. For a given Wair, the surface temperature can be approximately 5 to 8 °C lower when using a semipermeable membrane, compared to an impermeable plate, before condensation/frosting occurs. Furthermore, it is shown that at some operating conditions, frost appears on the semipermeable membrane only at the air flow entrance of the test section, while the impermeable plate was fully covered with frost at the same operating conditions. Moreover, it is shown that increasing the moisture transfer rate through the semipermeable membrane decreases the frosting limit and delays frost formation.

References

References
1.
Georgiadis
,
J. G.
, and
Hoke
,
J.
,
2004
, “
Quantitative Visualization of Early Frost Growth With Scanning Confocal Microscopy
,”
Tenth Brazilian Congress of Thermal Sciences and Engineering, Rio De Janeiro
, Brazil, Nov. 30–Dec. 4.
2.
Nath
,
S.
,
Ahmadi
,
S. F.
, and
Boreyko
,
J. B.
,
2017
, “
A Review of Condensation Frosting
,”
J. Nanoscale Microscale Thermophys. Eng.
,
21
(
2
), pp.
81
101
.
3.
Jones
,
B. W.
, and
Parker
,
J. D.
,
1975
, “
Frost Formation With Varying Environmental Parameters
,”
ASME J. Heat Transfer
,
97
(
2
), pp.
255
259
.
4.
Tao
,
Y. X.
,
Besant
,
R. W.
, and
Rezkallah
,
K. S.
,
1993
, “
A Mathematical Model for Predicting the Densification and Growth of Frost on a Flat Plate
,”
Int. J. Heat Mass Transfer
,
36
(
2
), pp.
353
363
.
5.
Le Gall
,
R.
, and
Grillot
,
J. M.
,
1997
, “
Modelling of Frost Growth and Densification
,”
Int. J. Heat Mass Transfer
,
40
(
13
), pp.
3177
3187
.
6.
Lee
,
K. S.
,
Jhee
,
S.
, and
Yang
,
D. K.
,
2003
, “
Prediction of the Frost Formation on a Cold Flat Surface
,”
Int. J. Heat Mass Transfer
,
46
(
20
), pp.
3789
3796
.
7.
Biguria
,
G.
, and
Wenzel
,
L. A.
,
1970
, “
Measurement and Correlation of Water Frost Conductivity and Density
,”
Ind. Eng. Chem. Fundam.
,
9
(
1
), pp.
129
138
.
8.
Mao
,
Y.
,
1991
, “
The Measurement and Analysis of Frost Accumulation on a Flat Plate With Forced Convection
,” M.Sc. thesis, University of Saskatchewan, Saskatoon, SK, Canada.
9.
Piucco
,
R. O.
,
Hermes
,
C. J. L.
,
Melo
,
C.
, and
Barbosa
,
J. R.
,
2008
, “
A Study of Frost Nucleation on Flat Surfaces
,”
Exp. Therm. Fluid Sci.
,
32
(
8
), pp.
1710
1715
.
10.
Shin
,
J.
,
Tikhonov
,
A. V.
, and
Kim
,
C.
,
2003
, “
Experimental Study on Frost Structure on Surfaces With Different Hydrophilicity: Density and Thermal Conductivity
,”
ASME J. Heat Transfer
,
125
(
1
), pp.
84
94
.
11.
Bharathidasan
,
T.
,
Kumar
,
S. V.
,
Bobji
,
M. S.
,
Chakradhar
,
R. P. S.
, and
Basu
,
B. J.
,
2014
, “
Effect of Wettability and Surface Roughness on Ice-Adhesion Strength of Hydrophilic, Hydrophobic and Superhydrophobic Surfaces
,”
Appl. Surf. Sci.
,
314
, pp.
241
250
.
12.
Yang
,
S.
,
Xia
,
Q.
,
Zhu
,
L.
,
Xue
,
J.
,
Wang
,
Q.
, and
Chen
,
Q.
,
2011
, “
Research on the Icephobic Properties of Fluoropolymer-Based Materials
,”
Appl. Surf. Sci.
,
257
(
11
), pp.
4956
4962
.
13.
Jung
,
S.
,
Dorrestijn
,
M.
,
Raps
,
D.
,
Das
,
A.
,
Megaridis
,
C. M.
, and
Poulikakos
,
D.
,
2011
, “
Are Superhydrophobic Surfaces Best for Icephobicity?
,”
Langmuir
,
27
(
6
), pp.
3059
3066
.
14.
Hoke
,
J. L.
,
Georgiadis
,
J. G.
,
Jacobi
,
A. M.
, and
Phoenix
,
H.
,
2000
, “
The Interaction Between the Substrate and Frost Layer Through Condensate Distribution
,” Ph.D. thesis, University of Illinois at Urbana-Champaign , Urbana, IL.
15.
Wang
,
F.
,
Liang
,
C.
, and
Zhang
,
X.
,
2018
, “
Research of Anti-Frosting Technology in Refrigeration and Air Conditioning Fields: A Review
,”
Renewable Sustainable Energy Rev.
,
81
, pp.
707
722
.
16.
Cai
,
L.
,
Wang
,
R.
,
Hou
,
P.
, and
Zhang
,
X.
,
2011
, “
Study on Restraining Frost Growth at Initial Stage by Hydrophobic Coating and Hygroscopic Coating
,”
J. Energy Build.
,
43
(
5
), pp.
1159
1163
.
17.
Okoroafor
,
E.
, and
Newborough
,
M.
,
2000
, “
Minimising Frost Growth on cold surfaces exposed to Humid Air by Means of Crosslinked Hydrophilic Polymeric Coatings
,”
J. Appl. Therm. Eng.
,
20
(
8
), pp.
737
758
.
18.
Hao
,
Q.
,
Pang
,
Y.
,
Zhao
,
Y.
,
Zhang
,
J.
,
Feng
,
J.
, and
Yao
,
S.
,
2014
, “
Mechanism of Delayed Frost Growth on Superhydrophobic Surfaces With Jumping Condensates: More Than Interdrop Freezing
,”
Am. Chem. Soc.
,
30
(
51
), pp.
15415
15422
.
19.
Liu
,
Z.
,
Wang
,
H.
,
Zhang
,
X.
,
Meng
,
S.
, and
Ma
,
C.
,
2006
, “
An Experimental Study on Minimizing Frost Deposition on a Cold Surface Under Natural Convection Conditions by Use of a Novel Anti-Frosting Paint—Part II: Long-Term Performance, Frost Layer Observation and Mechanism Analysis
,”
Int. J. Refrig.
,
29
(
2
), pp.
237
242
.
20.
Holmberg
,
R. B.
,
1993
, “
Prediction of Condensation and Frosting Limits in Rotary Wheels for Heat Recovery in Buildings
,”
ASHRAE Trans.
,
99
(
1
), pp.
64
69
. http://www.aivc.org/sites/default/files/airbase_3366.pdf
21.
Fisk
,
W.
,
Chant
,
R.
,
Archer
,
K.
,
Hekmat
,
D.
,
Offermann
,
F.
, and
Pedersen
,
B.
,
1985
, “
Onset of Freezing in Residential Air-to-Air Heat Exchangers
,”
ASHRAE Trans.
,
91
(
2
), pp.
159
172
.https://escholarship.org/uc/item/97f07030
22.
Liu
,
P.
,
Rafati Nasr
,
M.
,
Ge
,
G.
,
Justo Alonso
,
M.
,
Mathisen
,
H. M.
,
Fathieh
,
F.
, and
Simonson
,
C.
,
2016
, “
A Theoretical Model to Predict Frosting Limits in Cross-Flow Air-to-Air Flat Plate Heat/Energy Exchangers
,”
J. Energy Build.
,
110
, pp.
404
414
.
23.
Rafati Nasr
,
M.
,
Fathieh
,
F.
,
Kadylak
,
D.
,
Huizing
,
R.
,
Besant
,
R. W.
, and
Simonson
,
C. J.
,
2016
, “
Experimental Methods for Detecting Frosting in Cross-Flow Air-to-Air Energy Exchangers
,”
J. Exp. Therm. Fluid Sci.
,
77
, pp.
100
115
.
24.
Rafati Nasr
,
M.
,
Fauchoux
,
M.
,
Besant
,
R. W.
, and
Simonson
,
C. J.
,
2014
, “
A Review of Frosting in Air-to-Air Energy Exchangers
,”
J. Renewable Sustainable Energy Rev.
,
30
, pp.
538
554
.
25.
Conde
,
M. R.
,
2004
, “
Properties of Aqueous Solutions of Lithium and Calcium Chlorides: Formulations for Use in Air Conditioning Equipment Design
,”
Int. J. Therm. Sci.
,
43
(
4
), pp.
367
382
.
26.
Larson
,
M. D.
,
2006
, “
Around Heat and Moisture Exchanger
,” M.Sc Thesis, University of Saskatchewan, Saskatoon, SK, Canada.
27.
Nilex, 2018, “
Nilex Inc.
,” Nilex, Saskatoon, Torronto, accessed Aug. 25, 2018, http://nilex.com/sites/default/files/Nilex-CGSB-Vapor-Barrier-Product-Specifications-10-15mil.pdf
28.
Krishnamurty
,
V.
, and
Rao
,
N. V. S.
,
1966
, “
Heat Transfer in Non-Circular Conduits—Part IV: Laminar Forced Convection in Rectangular Channels
,”
Indian J. Technol.
,
5
, pp.
331
333
.
29.
National Institute of Health
, 2018, “
ImageJ: Image Processing and Analysis in Java
,” National Institute of Health, Bethesda, MD, accessed July, 2018 https://imagej.nih.gov/ij/
You do not currently have access to this content.