In this study, convective heat transfer in a discretely heated parallel-plate vertical channel which simulates an IC package is investigated experimentally and numerically. Both natural and mixed convection cases are considered. The primary focus of the study is on determining optimum relative lengths of the heat sources in order to reduce the hot spot temperature and to maximize heat transfer from the sources to air. Various values of the length ratio and the modified Grashof number (for the natural convection case)/the Richardson number (for the mixed convection case) are examined. Conductive and radiative heat transfer is included in the analysis while air is used as the working fluid. Surface temperatures of the heat sources and the channel walls are measured in the experimental study. The numerical studies are performed using a commercial CFD code, ANSYS fluent. The variations of surface temperature, hot spot temperature, Nusselt number, and global conductance of the system are obtained for varying values of the working parameters. From the experimental studies, it is showed that the use of identical heat sources reduces the overall cooling performance both in natural and mixed convection. However, relatively decreasing heat sources lengths provides better cooling performance.

References

References
1.
Vassighi
,
A.
, and
Sachdev
,
M.
,
2006
,
Thermal and Power Management of Integrated Circuits
,
Springer US
,
New York
, Chap. 1.
2.
Bar-Cohen
,
A.
,
Watye
,
A. A.
, and
Prasher
,
R. S.
,
2003
, “
Heat Transfer in Electronic Equipment
,”
Heat Transfer Handbook
,
Wiley
,
New York
, Chap. 13.
3.
Yeh
,
L. T.
,
1995
, “
Review of Heat Transfer Technologies in Electronic Equipment
,”
ASME J. Electron. Packag.
,
17
(
4
), pp.
333
339
.
4.
Yan
,
W. M.
, and
Lin
,
T. F.
,
1987
, “
Natural Convection Heat Transfer in Vertical Open Channel Flows With Discrete Heating
,”
Int. Commun. Heat Mass.
,
14
(
2
), pp.
187
200
.
5.
Chadwick
,
M. L.
,
Webb
,
B. W.
, and
Heaton
,
H. S.
,
1991
, “
Natural Convection From Discrete Heat Sources in a Vertically Vented Rectangular Enclosure
,”
Exp. Heat Transfer
,
4
(
3
), pp.
199
216
.
6.
Bessaih
,
R.
, and
Kadja
,
M.
,
2000
, “
Turbulent Natural Convection Cooling of Electronic Components Mounted on a Vertical Channel
,”
Appl. Therm. Eng.
,
20
(
2
), pp.
141
154
.
7.
Manca
,
O.
,
Nardini
,
S.
, and
Naso
,
V.
,
2002
, “
Effect on Natural Convection of the Distance Between an Inclined Discretely Heated Plate and a Parallel Shroud Below
,”
ASME J. Heat Transfer
,
124
(
3
), pp.
441
451
.
8.
Gunes
,
H.
, and
Liakopoulos
,
A.
,
2003
, “
Three-Dimensional Convective Cooling in a Vertical Channel With Flush-Mounted Heat Sources
,”
Int. J. Heat Mass Transfer
,
46
(
5
), pp.
791
808
.
9.
Desrayaud
,
G.
, and
Fichera
,
A.
,
2003
, “
On Natural Convective Heat Transfer in Vertical Channels With a Single Surface Mounted Heat-Flux Module
,”
ASME J. Heat Transfer
,
125
(
4
), pp.
734
739
.
10.
Browmik
,
H.
, and
Tou
,
K. W.
,
2005
, “
Experimental Study of Transient Natural Convection Heat Transfer From Simulated Electronic Chips
,”
Exp. Therm. Fluid Sci.
,
29
(
4
), pp.
485
492
.
11.
Desrayaud
,
A.
,
Fichera
,
G.
, and
Lauriat
,
G.
,
2007
, “
Natural Convection Air-Cooling of a Substrate-Mounted Protruding Heat Source in a Stack of Parallel Boards
,”
Int. J. Heat Fluid Flow
,
28
(
3
), pp.
469
482
.
12.
Gavara
,
M.
,
2012
, “
Natural Convection in a Vertical Channel With Arrays of Flush-Mounted Heaters on opposite Conductive Walls
,”
Numer. Heat Transfer Part A-Appl.
,
62
(
11
), pp. 111–135.
13.
McEntire
,
A. B.
, and
Webb
,
B. W.
,
1990
, “
Local Forced Convective Heat Transfer From Protruding and Flush-Mounted Two-Dimensional Discrete Heat Sources
,”
Int. J. Heat Mass Transfer
,
33
(
7
), pp.
1521
1533
.
14.
Elpidorou
,
D.
,
Prasad
,
V.
, and
Modi
,
V.
,
1991
, “
Convection in a Vertical Channel With a Finite Wall Heat Source
,”
Int. J. Heat Mass Transfer
,
3
(
2
), pp.
573
578
.
15.
Choi
,
C. Y.
, and
Ortega
,
A.
,
1992
, “
Mixed Convection in an Inclined Channel With a Discrete Heat Source
,”
IEEE
Intersociety Conference on Thermal Phenomena
, Austin, TX, Feb. 5–8, pp.
40
48
.
16.
Yucel
,
C.
,
Hasnaoui
,
M.
,
Robillard
,
L.
, and
Bilgen
,
E.
,
1993
, “
Mixed Convection Heat Transfer in Open Ended Inclined Channels With Discrete Isothermal Heating
,”
Numer. Heat Transfer Part A-Appl.
,
24
(
1
), pp.
109
126
.
17.
Turkoglu
,
H.
, and
Yucel
,
N.
,
1995
, “
Mixed Convection in Vertical Channels With a Discrete Heat Source
,”
Heat Mass Transfer
,
30
(
3
), pp.
159
166
.
18.
Hwang
,
J. J.
,
1998
, “
Conjugate Heat Transfer for Developing Flow Over Multiple Discrete Thermal Sources Flush-Mounted on the Wall
,”
ASME J. Heat Transfer
,
120
(
2
), pp.
510
514
.
19.
Xu
,
G. P.
,
Tou
,
K. W.
, and
Tso
,
C. P.
,
1998
, “
Numerical Modelling of Turbulent Heat Transfer From Discrete Heat Sources in a Liquid-Cooled Channel
,”
Int. J. Heat Mass Transfer
,
41
(
10
), pp.
1157
1166
.
20.
Tsay
,
Y. L.
,
1999
, “
Transient Conjugate Mixed-Convective Heat Transfer in a Vertical Plate Channel With One Wall Heated Discretely
,”
Heat Mass Transfer
,
35
(
5
), pp.
391
400
.
21.
Tso
,
C. P.
,
Xu
,
G. P.
, and
Tou
,
K. W.
,
1999
, “
An Experimental Study on Forced Convection Heat Transfer From Flush-Mounted Discrete Heat Sources
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
326
332
.
22.
Chiu
,
W. K. S.
,
Richards
,
C. J.
, and
Jaluria
,
Y.
,
2001
, “
Experimental and Numerical Study of Conjugate Heat Transfer in a Horizontal Channel Heated From Below
,”
ASME J. Heat Transfer
,
123
(
4
), pp.
688
697
.
23.
Rao
,
C. G.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2001
, “
Conjugate Mixed Convection With Surface Radiation From a Vertical Plate With a Discrete Heat Source
,”
ASME J. Heat Transfer
,
123
(
4
), pp.
698
702
.
24.
Rao
,
C. G.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2002
, “
Effect of Surface Radiation on Conjugate Mixed Convection in a Vertical Channel With a Discrete Heat Source in Each Wall
,”
Int. J. Heat Mass Transfer
,
45
(
16
), pp.
3331
3347
.
25.
Rao
,
C. G.
,
2004
, “
Buoyancy-Aided Mixed Convection With Conduction and Surface Radiation From a Vertical Electronic Board With a Traversable Discrete Heat Source
,”
Numer. Heat Transfer Part A-Appl.
,
45
(
9
), pp.
935
956
.
26.
Sawant
,
S. M.
, and
Rao
,
C. G.
,
2008
, “
Conjugate Mixed Convection With Surface Radiation From a Vertical Electronic Board With Multiple Discrete Heat Sources
,”
Heat Mass Transfer
,
44
(
12
), pp.
1485
1495
.
27.
Rao
,
G. G.
, and,
C. G.
,
2011
, “
Interaction of Surface Radiation With Conjugate Mixed Convection From a Vertical Plate With Multiple Nonidentical Discrete Heat Sources
,”
Chem. Eng. Commun.
,
198
(
5
), pp.
692
710
.
28.
Londhe
,
S. D.
, and
Rao
,
C. G.
,
2014
, “
Interaction of Surface Radiation With Conjugate Mixed Convection From a Vertical Channel With Multiple Discrete Heat Sources
,”
Heat Mass Transfer
,
50
(
9
), pp.
1275
1290
.
29.
Wang
,
Q.
, and
Jaluria
,
Y.
,
2002
, “
Instability and Heat Transfer in Mixed Convection Flow in a Horizontal Duct With Discrete Heat Sources
,”
Numer. Heat Transfer Part A-Appl.
,
42
(
5
), pp.
445
463
.
30.
Wang
,
Q.
, and
Jaluria
,
Y.
,
2004
, “
Three-Dimensional Conjugate Heat Transfer in a Horizontal Channel With Discrete Heating
,”
ASME J. Heat Transfer
,
126
(
4
), pp.
642
647
.
31.
Mathews
,
R. N.
, and
Balaji
,
C.
,
2006
, “
Numerical Simulation of Conjugate, Turbulent Mixed Convection Heat Transfer in a Vertical Channel With Discrete Heat Sources
,”
Int. Commun. Heat Mass
,
33
(
7
), pp.
908
916
.
32.
Mathews
,
R. N.
,
Balaji
,
C.
, and
Sundararajan
,
T.
,
2006
, “
Computation of Conjugate Heat Transfer in the Turbulent Mixed Convection Regime in a Vertical Channel With Multiple Heat Sources
,”
Heat Mass Transfer
,
43
(
10
), pp.
1063
1074
.
33.
Bahlaoui
,
A.
,
Raji
,
A.
,
Lamsaadi
,
M.
,
Naimi
,
M.
, and
Hasnaoui
,
M.
,
2007
, “
Mixed Convection in a Horizontal Channel With Emissive Walls and Partially Heated From Below
,”
Numer. Heat Transfer Part A-Appl.
,
51
(
9
), pp.
855
875
.
34.
Guimaraes
,
P. M.
, and
Menon
,
G. J.
,
2008
, “
Combined Free and Forced Convection in an Inclined Channel With Discrete Heat Sources
,”
Int. Commun. Heat Mass
,
35
(
10
), pp.
1267
1274
.
35.
Hamouche
,
A.
, and
Bessaih
,
R.
,
2009
, “
Mixed Convection Air Cooling of Protruding Heat Sources Mounted in a Horizontal Channel
,”
Int. Commun. Heat Mass
,
36
(
8
), pp.
841
849
.
36.
Boutina
,
L.
, and
Bessaih
,
R.
,
2011
, “
Numerical Simulation of Mixed Convection Air-Cooling of Electronic Components Mounted in an Inclined Channel
,”
Appl. Therm. Eng.
,
31
(
11–12
), pp.
2052
2062
.
37.
He
,
J.
,
Liu
,
L.
, and
Jacobi
,
A. M.
,
2011
, “
Conjugate Thermal Analysis of Air-Cooled Discrete Flush-Mounted Heat Sources in a Horizontal Channel
,”
ASME J. Heat Transfer
,
133
(
4
), p.
041001
.
38.
Dhingra
,
P. S.
, and
Ghoshdastidar
,
A.
,
2016
, “
A Numerical Study of the Effect of Thermal Radiation on the Forced Air Cooling of Low Heat Flux Electronic Chips Mounted on One Side of a Vertical Channel
,” 15th
IEEE
Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, Las Vegas, NV, May 31–June 3, pp.
1107
1116
.
39.
Chen
,
S.
,
Liu
,
Y.
,
Chan
,
S. F.
,
Leung
,
C. W.
, and
Chan
,
T. L.
,
2001
, “
Experimental Study of Optimum Spacing Problem in the Cooling of Simulated Electronic Package
,”
Heat Mass Transfer
,
37
(
2–3
), pp.
251
257
.
40.
Avelar
,
A. C.
, and
Ganzarolli
,
M. M.
,
2004
, “
Natural Convection in an Array of Vertical Channels With Two-Dimensional Heat Sources: Uniform and Non-Uniform Plate Heating
,”
Heat Transfer Eng.
,
25
(
7
), pp.
46
56
.
41.
Da Silva
,
A. K.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2004
, “
Optimal Distribution of Discrete Heat Sources on a Wall With Natural Convection
,”
Int. J. Heat Mass Transfer
,
47
(
2
), pp.
203
214
.
42.
Da Silva
,
A. K.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2004
, “
Optimal Distribution of Discrete Heat Sources on a Plate With Laminar Forced Convection
,”
Int. J. Heat Mass Transfer
,
47
(
10–11
), pp.
2139
2148
.
43.
Da Silva
,
A. K.
,
Lorenzini
,
G.
, and
Bejan
,
A.
,
2005
, “
Distribution of Heat Sources in Vertical Open Channels With Natural Convection
,”
Int. J. Heat Mass Transfer
,
48
(
8
), pp.
1462
1469
.
44.
Da Silva
,
A. K.
, and
Gosselin
,
L.
,
2008
, “
Evolutionary Placement of Discrete Heaters in Forced Convection
,”
Numer. Heat Transfer Part A-Appl.
,
54
(
1
), pp.
20
33
.
45.
Jassim
,
E.
, and
Muzychka
,
Y. S.
,
2010
, “
Optimal Distribution of Heat Sources in Convergent Channels Cooled by Laminar Forced Convection
,”
ASME J. Heat Transfer
,
132
(
1
), p.
011701
.
46.
Hajmohammadi
,
M. R.
,
Shirani
,
E.
,
Salimpour
,
M. R.
, and
Campo
,
A.
,
2012
, “
Constructal Placement of Unequal Heat Sources on a Plate Cooled by Laminar Forced Convection
,”
Int. J. Therm. Sci
,,
60
, pp.
13
22
.
47.
Bourisli
,
R. I.
, and
Alawadhi
,
E. M.
,
2011
, “
Optimum Placement of Heated Blocks in Laminar Forced Convection
,”
IEEE Trans. Comp. Pack. Man.
,
1
(
7
), pp.
1036
1047
.
48.
Hotta
,
T. K.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2014
, “
Optimal Distribution of Discrete Heat Sources Under Mixed Convection—A Heuristic Approach
,”
ASME J. Heat Transfer
,
136
(
10
), p.
104503
.
49.
Xie
,
G.
,
Liu
,
J.
,
Zhang
,
W.
,
Lorenzini
,
G.
, and
Biserni
,
C.
,
2014
, “
Numerical Prediction of Flow Structure and Heat Transfer in Square Channels With Dimples Combined With Secondary Half-Size Dimples/Protrusions
,”
Numer. Heat Transfer Part A-Appl.
,
65
(
4
), pp.
327
356
.
50.
Shi
,
Z.
, and
Dong
,
T.
,
2015
, “
A Synthetic Layout Optimization of Discrete Heat Sources Flush Mounted on a Laminar Flow Cooled Flat Plate Based on the Constructal Law
,”
Energy Convers Manage.
,
106
, pp.
300
307
.
51.
Durgam
,
S.
,
Venkateshan
,
S. P.
, and
Sundararajan
,
2017
, “
Experimental and Numerical Investigations on Optimal Distribution of Heat Source Array Under Natural and Forced Convection in a Horizontal Channel
,”
Int. J. Therm. Sci.
,
115
, pp.
125
138
.
52.
Durgam
,
S.
,
Venkateshan
,
S. P.
, and
Sundararajan
,
2018
, “
A Novel Concept of Discrete Heat Source Array With Dummy Components Cooled by Forced Convection in a Vertical Channel
,”
Appl. Therm. Eng.
,
129
, pp.
979
994
.
53.
Feijo
,
B. C.
,
Lorenzini
,
G.
,
Isoldi
,
L. A.
,
Rocha
,
L. A. O.
,
Goulart
,
J. N. V.
, and
Dos Santos
,
E. D.
,
2018
, “
Constructal Design of Forced Convective Flows in Channels With Two Alternated Rectangular Heated Bodies
,”
Int. J. Heat Mass Transfer
,
125
, pp.
710
721
.
54.
Teixeria
,
F. B.
,
Lorenzini
,
G.
,
Errera
,
M. R.
,
Rocha
,
L. A. O.
,
Isoldi
,
L. A.
, and
Dos Santos
,
E. D.
,
2018
, “
Constructal Design of Triangular Arrangements of Square Bluff Bodies Under Forced Convective Turbulent Flows
,”
Int. J. Heat Mass Transfer
,
126
, pp.
521
535
.
55.
Sarper
,
B.
,
Saglam
,
M.
,
Aydin
,
O.
, and
Avci
,
M.
,
2018
, “
Natural Convection in a Parallel-Plate Vertical Channel With Discrete Heating by Two Flush-Mounted Heaters: Effect of the Clearance Between the Heaters
,”
Heat Mass Transfer
,
54
(
4
), pp.
1069
1083
.
56.
Sarper
,
B.
,
Saglam
,
M.
, and
Aydin
,
O.
,
2018
, “
Experimental and Numerical Investigation of Natural Convection in a Discretely Heated Vertical Channel: Effect of the Blockage Ratio of the Heat Sources
,”
Int. J. Heat Mass Transfer
,
126
, pp.
894
910
.
57.
Bejan
,
A.
, and
Lorente
,
S.
,
2008
,
Design With Constructal Theory
,
Wiley
,
New York
.
58.
Bejan
,
A.
, and
Lorente
,
S.
,
2006
, “
Constructal Theory of Generation of Configuration in Nature and Engineering
,”
J. Appl. Phys.
,
100
(
4
), p.
041301
.
59.
Bejan
,
A.
,
2015
, “
Constructal Law: Optimization as Design Evolution
,”
ASME J. Heat Transfer
,
137
(
6
), p.
061003
.
60.
Holman
,
J. P.
,
2012
,
Experimental Methods for Engineers
,
The McGraw-Hill Companies
,
New York
.
61.
ANSYS,
2013
,
ANSYS Fluent Theory Guide Release 15
, ANSYS, Inc., Canonsburg, PA.
You do not currently have access to this content.