Phase change materials (PCMs) are commonly used in many applications, including the transient thermal management of electronics. For many systems, paraffin-based PCMs are used with suspended nanoinclusions to increase their effective thermal conductivity. The addition of these materials can have a positive impact on thermal conductivity, but can also increase the viscosity in the liquid phase. In this paper, the impact of different nanoinclusions and surfactants on the dynamic viscosity of a common paraffin wax PCM is quantified in order to determine their suitability for thermal energy storage applications. The effect of the nanoparticles on the viscosity is found to be a function of the nanoparticle type with multiwalled carbon nanotubes (MWCNT) yielding the greatest increase in viscosity. The addition of both nanoparticle and surfactant to the base PCM is found to affect the viscosity even when the loading levels of the nanoparticles or surfactant alone are not enough to affect the viscosity, thus the combination must be carefully considered in any heat transfer application.

References

References
1.
Weinstein
,
R. D.
,
Kopec
,
T. C.
,
Fleischer
,
A. S.
,
D'Addio
,
E.
, and
Bessel
,
C. A.
,
2008
, “
The Experimental Exploration of Embedding Phase Change Materials With Graphite Nanofibers for the Thermal Management of Electronics
,”
ASME J. Heat Transfer
,
130
(
4
), p.
042405
.
2.
Elgafy
,
A.
, and
Lafdi
,
K.
,
2005
, “
Effect of Carbon Nanofiber Additives on Thermal Behavior of Phase Change Materials
,”
Carbon
,
43
(
15
), pp.
3067
74
.
3.
Chintakrinda
,
K.
,
Weinstein
,
R.
, and
Fleischer
,
A. S.
,
2011
, “
A Direct Comparison of Three Different Material Enhancement Methods on the Transient Thermal Response of Paraffin Phase Change Material Exposed to High Heat Fluxes
,”
Int. J. Therm. Sci.
,
50
(
9
), pp.
1639
1647
.
4.
Warzoha
,
R.
,
Weigand
,
R.
, and
Fleischer
,
A. S.
,
2015
, “
Temperature-Dependent Thermal Properties of a Paraffin Phase Change Material Embedded With Herringbone Style Graphite Nanofibers
,”
Appl. Energy
,
137
, pp.
716
725
.
5.
Yu
,
Z.
,
Fang
,
X.
,
Fan
,
L.
,
Wang
,
X.
,
Xiao
,
Y.
,
Zeng
,
Y.
,
Xu
,
X.
,
Hu
,
Y.
, and
Cen
,
K.
,
2013
, “
Increased Thermal Conductivity of Liquid Paraffin Based Suspensions in the Presence of Carbon Nano-Additives of Various Shapes and Sizes
,”
Carbon
,
53
, pp.
277
285
.
6.
Xu
,
T.
,
Li
,
Y.
,
Chen
,
J.
, and
Liu
,
J.
,
2017
, “
Preparation and Thermal Energy Storage Properties of LiNo3-KCL-NaNO3 Expanded Graphite Composite Phase Change Material
,”
Sol. Energy Mater. Sol. Cells
,
169
, pp.
215
221
.
7.
Srinivasan
,
S.
,
Diallo
,
M. S.
,
Saha
,
S. K.
,
Abass
,
O. A.
,
Sharma
,
A.
, and
Balasubramanian
,
G.
,
2017
, “
Effect of Temperature and Graphite Particle Fillers on Thermal Conductivity and Viscosity of Phase Change Material n-Eicosane
,”
Int. J. Heat Mass Transfer
,
114
, pp.
318
323
.
8.
Ho
,
C. J.
, and
Gao
,
J. Y.
,
2009
, “
Preparation and Thermophysical Properties of Nanoparticles in Paraffin Emulsion as Phase Change Material
,”
Int. Commun. Heat Mass Transfer
,
36
(
5
), pp.
467
470
.
9.
Ho
,
C. J.
, and
Gao
,
J. Y.
,
2013
, “
An Experimental Study on Melting Heat Transfer of Paraffin Dispersed With Al2O3 Nanoparticles in a Vertical Enclosure
,”
Int. J. Heat Mass Transfer
,
62
, pp.
2
8
.
10.
Dhaidan
,
N. S.
,
Khodadadi
,
J. M.
,
Al-Hattab
,
T. A.
, and
Al-Mashat
,
S. M.
,
2013
, “
Experimental and Numerical Investigation of Melting NePCM Inside an Annular Container Under a Constant Heat Flus Including the Effect of Eccentricity
,”
Int. J. Heat Mass Transfer
,
67
, pp.
523
534
.
11.
Fan
,
L.-W.
,
Zhu
,
Z.
,
Zeng
,
Y.
,
Lu
,
Q.
, and
Yu
,
Z.
,
2014
, “
Heat Transfer During Melting of Graphene Based Composite Phase Change Materials Heated From below
,”
Int. J. Heat Mass Transfer
,
79
, pp.
94
104
.
12.
Parameshwaran
,
R.
,
Deepak
,
K.
,
Saravanan
,
R.
, and
Kalaiselvam
,
S.
,
2014
, “
Preparation, Thermal Ad Rheological Properties of Hybrid Nanocomposite Phase Change Material for Thermal Energy Storage
,”
Appl. Energy
,
115
, pp.
320
330
.
13.
Motahar
,
S.
,
Alemrajabi
,
A. A.
, and
Khodabandeh
,
R.
,
2017
, “
Experimental Investigation on Heat Transfer Characteristics During Melting With Dispersed TiO2 Nanoparticles in a Rectangular Enclosure
,”
Int. J. Heat Mass Transfer
,
109
, pp.
134
146
.
14.
Freund
,
M.
,
Csikos
,
R.
,
Keszthelyi
,
S.
, and
Mozes
,
G. Y.
,
1982
,
Paraffin Products: Properties, Technologies, Applications
,
Elsevier Scientific Publishing Company
,
Amsterdam, The Netherlands
, p.
94
.
15.
The International Group
,
2009
, “
Technical Data Sheet, IGI-1230A
,” The International Group, Inc., Torronto, ON, Canada.
16.
Bessel
,
C. A.
,
Laubernds
,
K.
,
Rodriguez
,
N. M.
, and
Baker
,
R. T. K.
,
2001
, “
Graphite Nanofibers as an Electrode for Fuel Cell Applications
,”
J. Phys. Chem.
,
105
, pp.
1115
1118
.
You do not currently have access to this content.