Gas turbines have been extensively used for aircraft engine propulsion, land-based power generation, and industrial applications. Power output and thermal efficiency of gas turbines increase with increasing turbine rotor inlet temperatures (RIT). Currently, advanced gas turbines operate at turbine RIT around 1700 °C far higher than the yielding point of the blade material temperature about 1200 °C. Therefore, turbine rotor blades need to be cooled by 3–5% of high-pressure compressor air around 700 °C. To design an efficient turbine blade cooling system, it is critical to have a thorough understanding of gas turbine heat transfer characteristics within complex three-dimensional (3D) unsteady high-turbulence flow conditions. Moreover, recent research trend focuses on aircraft gas turbines that operate at even higher RIT up to 2000 °C with a limited amount of cooling air, and land-based power generation gas turbines (including 300–400 MW combined cycles with 60% efficiency) burn alternative syngas fuels with higher heat load to turbine components. It is important to understand gas turbine heat transfer problems with efficient cooling strategies under new harsh working environments. Advanced cooling technology and durable thermal barrier coatings (TBCs) play most critical roles for development of new-generation high-efficiency gas turbines with near-zero emissions for safe and long-life operation. This paper reviews basic gas turbine heat transfer issues with advanced cooling technologies and documents important relevant papers for future research references.

References

1.
Han
,
J. C.
, and
Wright
,
L. M.
,
2006
, “
Enhanced Internal Cooling of Turbine Blades and Vanes
,”
The Gas Turbine Handbook
,
National Energy Technology Laboratory
,
Morgantown, WV
, pp.
321
352
.
2.
Han
,
J. C.
, and
Rallabandi
,
A. P.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transfer
,
1
(
1
), pp.
1
21
.
3.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Advances in Heat Transfer
, Vol.
7
,
Academic Press
,
New York
, pp.
321
379
.
4.
Suo
,
M.
,
1978
, “
Turbine Cooling
,”
Aerothermodynamics of Aircraft Gas Turbine Engines
,
Oates
,
G.
, ed.,
Air Force Aero Propulsion Laboratory, Wright-Patterson Air Force Base
,
OH
, pp. 19–40.
5.
Elovic
,
E.
, and
Koffel
,
W. K.
,
1983
, “
Some Considerations in the Thermal Design of Turbine Airfoil Cooling Systems
,”
Int. J. Turbo Jet-Engines
,
1
(
1
), pp.
45
65
.
6.
Graham
,
R. W.
,
1979
, “
Fundamental Mechanisms That Influence the Estimate of Heat Transfer to Gas Turbine Blades
,”
ASME
Paper No. 79-HT-43.
7.
Simoneau
,
R. J.
, and
Simon
,
F. F.
,
1993
, “
Progress Towards Understanding and Predicting Convection Heat Transfer in the Turbine Gas Path
,”
Int. J. Heat Fluid Flow
,
14
(
2
), pp.
106
127
.
8.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
, 1st ed.,
Taylor & Francis
,
New York
, p.
646
.
9.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
CRC Press
, Boca Raton, FL, p.
843
.
10.
Sunden
,
B.
, and
Faghri
,
M.
,
2001
,
Heat Transfer in Gas Turbines
,
WIT Press
,
Boston, MA
.
11.
Goldstein
,
R. J.
,
2001
, “
Heat Transfer in Gas Turbine Systems
,”
Ann. N. Y. Acad. Sci.
,
934
, p.
520
.
12.
Dennis
,
R.
,
2006
,
The Gas Turbine Handbook
,
U.S. DOE
, ed.,
National Energy Technology Laboratory
,
Morgantown, WV
.
13.
Simon
,
T. W.
, and
Goldstein
,
R. J.
,
2010
,
Heat Transfer in Gas Turbine Systems
, Vol.
41
,
Begell House
, Danbury, CT.
14.
Dunn
,
M. G.
,
2001
, “
Convection Heat Transfer and Aerodynamics in Axial Flow Turbines
,”
ASME J. Turbomach.
,
123
(
4
), pp.
637
686
.
15.
Bunker
,
R. S.
,
2006
, “
Gas Turbine Heat Transfer: 10 Remaining Hot Gas Path Challenges
,”
ASME
Paper No. GT2006-90002.
16.
Han
,
J. C.
,
2006
, “
Turbine Blade Cooling Studies at Texas A&M 1980-2004
,”
J. Thermophys. Heat Transfer
,
20
(
2
), pp.
161
187
.
17.
Shih
,
T. I.-P.
,
2006
, “
Special Section: Turbine Science and Technology
,”
J. Propul. Power
,
22
(
2
), pp.
225
396
.
18.
Downs
,
J. P.
, and
Landis
,
K. K.
,
2009
, “
Turbine Cooling Systems Design-Past, Present and Future
,”
ASME
Paper No. GT2009-59991.
19.
Chyu
,
M. K.
,
Mazzotta
,
D. W.
,
Siw
,
S. C.
,
Karaivanov
,
V. G.
,
Slaughter
,
W. S.
, and
Alvin
,
M. A.
,
2009
, “
Aerothermal Challenges in Syngas Hydrogen-Fired and Oxyfuel Turbines
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
1
), p.
011002
.
20.
Han
,
J. C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
.
21.
Burggraf
,
F.
,
1970
, “
Experimental Heat Transfer and Pressure Drop With Two-Dimensional Turbulence Promoter Applied to Two opposite Walls of a Square Tube
,”
Augmentation of Convective Heat and Mass Transfer
,
A. E.
Bergles
and
R. L.
Webb
eds.,
American Society of Mechanical Engineers
,
New York
, pp.
70
79
.
22.
Han
,
J. C.
,
Glicksman
,
L. R.
, and
Rohsenow
,
W. M.
,
1978
, “
An Investigation of Heat Transfer and Friction for Rib-Roughened Surfaces
,”
Int. J. Heat Mass Transfer
,
21
(
8
), pp.
1143
1156
.
23.
Han
,
J. C.
,
1984
, “
Heat Transfer and Friction in Channels With Two opposite Rib-Roughened Walls
,”
ASME J. Heat Transfer
,
106
(
4
), pp.
774
781
.
24.
Han
,
J. C.
,
Park
,
J. S.
, and
Lei
,
C. K.
,
1985
, “
Heat Transfer Enhancement in Channels With Turbulence Promoters
,”
ASME J. Eng. Gas Turbines Power
,
107
(
3
), pp.
628
635
.
25.
Han
,
J. C.
,
1988
, “
Heat Transfer and Friction Characteristics in Rectangular Channels With Rib Turbulators
,”
ASME J. Heat Transfer
,
110
(
2
), pp.
321
328
.
26.
Han
,
J. C.
, and
Park
,
J. S.
,
1988
, “
Developing Heat Transfer in Rectangular Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
31
(
1
), pp.
183
195
.
27.
Han
,
J. C.
,
Ou
,
S.
,
Park
,
J. S.
, and
Lei
,
C. K.
,
1989
, “
Augmented Heat Transfer in Rectangular Channels of Narrow Aspect Ratios With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
32
(
9
), pp.
1619
1630
.
28.
Park
,
J. S.
,
Han
,
J. C.
,
Huang
,
Y.
,
Ou
,
S.
, and
Boyle
,
R. J.
,
1992
, “
Heat Transfer Performance Comparisons of Five Rectangular Channels With Parallel Angled Ribs
,”
Int. J. Heat Mass Transfer
,
35
(
11
), pp.
2891
2903
.
29.
Chandra
,
P. R.
,
Han
,
J. C.
, and
Lau
,
S. C.
,
1988
, “
Effect of Rib Angle on Local Heat/Mass Transfer Distribution in a Two-Pass Rib-Roughened Channel
,”
ASME J. Turbomach.
,
110
(
2
), pp.
233
241
.
30.
Han
,
J. C.
, and
Zhang
,
P.
,
1991
, “
Effect of Rib Angle Orientation on Local Mass Transfer Distribution in a Three-Pass Rib-Roughened Channel
,”
ASME J. Turbomach.
,
113
(
1
), pp.
123
130
.
31.
Han
,
J. C.
,
Zhang
,
Y. M.
, and
Lee
,
C. P.
,
1991
, “
Augmented Heat Transfer in Square Channels With Parallel, Crossed, and V-Shaped Angled Ribs
,”
ASME J. Heat Transfer
,
113
(
3
), pp.
590
596
.
32.
Han
,
J. C.
, and
Zhang
,
Y. M.
,
1992
, “
High Performance Heat Transfer Ducts With Parallel and V-Shaped Broken Ribs
,”
Int. J. Heat Mass Transfer
,
35
(
2
), pp.
513
523
.
33.
Han
,
J. C.
,
Huang
,
J. J.
, and
Lee
,
C. P.
,
1993
, “
Augmented Heat Transfer in Square Channels With Wedge-Shaped and Delta-Shaped Turbulence Promoters
,”
J. Enhanced Heat Transfer
,
1
(
1
), pp.
37
52
.
34.
Rallabandi
,
A. P.
,
Alkhamis
,
N.
, and
Han
,
J. C.
,
2011
, “
Heat Transfer and Pressure Drop Measurements for a Square Channel With 45° Round Edged Ribs at High Reynolds Numbers
,”
ASME J. Turbomach.
,
133
(
3
), p.
031019
.
35.
Alkhamis
,
N. Y.
,
Rallabandi
,
A. P.
, and
Han
,
J. C.
,
2011
, “
Heat Transfer and Pressure Drop Correlation for Square Channels With V-Shaped Ribs at High Reynolds Numbers
,”
ASME J. Heat Transfer
,
133
(
11
), p.
111901
.
36.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1997
, “
Detailed Heat Transfer Distributions in Two-Pass Square Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
40
(
11
), pp.
2525
2537
.
37.
Ekkad
,
S. V.
,
Huang
,
Y.
, and
Han
,
J. C.
,
1998
, “
Detailed Heat Transfer Distributions in Two-Pass Smooth and Turbulated Square Channels With Bleed Holes
,”
Int. J. Heat Mass Transfer
,
41
(
23
), pp.
3781
3791
.
38.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
2000
, “
Liquid Crystal Thermography for Turbine Heat Transfer and Cooling Measurement
,”
Meas. Sci., Technol.
,
11
(
7
), pp.
957
968
.
39.
Zhang
,
Y. M.
,
Gu
,
W.
, and
Han
,
J. C.
,
1994
, “
Heat Transfer and Friction in Rectangular Channels With Ribbed or Ribbed-Grooved Walls
,”
ASME J. Heat Transfer
,
116
(
1
), pp.
58
65
.
40.
Zhang
,
Y. M.
,
Han
,
J. C.
, and
Lee
,
C. P.
,
1997
, “
Heat Transfer and Friction Characteristics of Turbulent Flow in Circular Tubes With Twisted-Tape Inserts and Axial Interrupted Ribs
,”
J. Enhanced Heat Transfer
,
4
(
4
), pp.
297
308
.
41.
Zhang
,
Y. M.
,
Azad
,
G. M. S.
,
Han
,
J. C.
, and
Lee
,
C. P.
,
2000
, “
Heat Transfer and Friction Characteristics of Turbulent Flow in Square Ducts With Wavy and Twisted-Tape Inserts and Axial Interrupted Ribs
,”
J. Enhanced Heat Transfer
,
7
(
1
), pp.
35
49
.
42.
Azad
,
G. M. S.
,
Huang
,
Y.
, and
Han
,
J. C.
,
2000
, “
Jet Impingement Heat Transfer on Dimpled Surfaces Using a Transient Liquid Crystal Technique
,”
AIAA J. Thermophys. Heat Transfer
,
14
(
2
), pp.
186
193
.
43.
Azad
,
G. M. S.
,
Huang
,
Y.
, and
Han
,
J. C.
,
2002
, “
Jet Impingement Heat Transfer on Pinned Surfaces Using a Transient Liquid Crystal Technique
,”
Int. J. Rotating Mach.
,
8
(
3
), pp.
161
173
.
44.
Mhetras
,
S.
,
Han
,
J. C.
, and
Huth
,
M.
,
2013
, “
Impingement Heat Transfer From Jet Arrays on Turbulated Target Walls at Large Reynolds Numbers
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
2
), p.
021003
.
45.
Mhetras
,
S.
,
Han
,
J. C.
, and
Huth
,
M.
,
2014
, “
Heat Transfer and Pressure Loss Measurements in a Turbulated High Aspect Ratio Channel With Large Reynolds Number Flows
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
4
), p.
041001
.
46.
Han
,
J. C.
,
Zhang
,
Y. M.
, and
Kalkuehler
,
K.
,
1992
, “
Uneven Wall Temperature Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel With Smooth Walls
,”
ASME J. Heat Transfer
,
114
(
4
), pp.
850
858
.
47.
Al-Qahtani
,
M.
,
Jang
,
Y. J.
,
Chen
,
H. C.
, and
Han
,
J. C.
,
2002
, “
Prediction of Flow and Heat Transfer in Rotating Two-Pass Rectangular Channels With 45-Degree Rib Turbulators
,”
ASME J. Turbomach.
,
124
(
2
), pp.
242
250
.
48.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Kopper
,
F. C.
,
1991
, “
Heat Transfer in Rotating Serpentine Passages With Smooth Walls
,”
ASME J. Turbomach.
,
113
(
3
), pp.
321
330
.
49.
Wagner
,
J. H.
,
Johnson
,
B. V.
,
Graziani
,
R. A.
, and
Yeh
,
F. C.
,
1992
, “
Heat Transfer in Rotating Serpentine Passages With Trips Normal to the Flow
,”
ASME J. Turbomach.
,
114
(
4
), pp.
847
857
.
50.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
,
1994
, “
Heat Transfer in Rotating Serpentine Passages With Trips Skewed to the Flow
,”
ASME J. Turbomach.
,
116
(
1
), pp.
113
123
.
51.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
,
1994
, “
Heat Transfer in Rotating Serpentine Passages With Selected Model Orientations for Smooth or Skewed Trip Walls
,”
ASME J. Turbomach.
,
116
(
1
), pp.
738
744
.
52.
Zhang
,
Y. M.
,
Han
,
J. C.
,
Parsons
,
J. A.
, and
Lee
,
C. P.
,
1995
, “
Surface Heating Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel With 60-Degree Angled Rib Turbulators
,”
ASME J. Turbomach.
,
117
(
2
), pp.
272
278
.
53.
Dutta
,
S.
, and
Han
,
J. C.
,
1996
, “
Local Heat Transfer in Rotating Smooth and Ribbed Two-Pass Square Channels With Three Channel Orientations
,”
ASME J. Heat Transfer
,
118
(
3
), pp.
578
584
.
54.
Al-Hadhrami
,
L.
, and
Han
,
J. C.
,
2003
, “
Effect of Rotation in Two-Pass Square Channels With Parallel and Crossed 45 Angled Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
46
(
4
), pp.
653
669
.
55.
Cheah
,
S. C.
,
Iacovides
,
H.
,
Jackson
,
D. C.
,
Ji
,
H.
, and
Launder
,
B. E.
,
1996
, “
LDA Investigation of the Flow Development Through Rotating U-Ducts
,”
ASME J. Turbomach.
,
118
(
3
), pp.
590
595
.
56.
Liou
,
T. M.
,
Chen
,
M. Y.
, and
Tsai
,
M. H.
,
2002
, “
Fluid Flow and Heat Transfer in a Rotating Two-Pass Square Duct With In-Line 90-Deg Ribs
,”
ASME J. Turbomach.
,
124
(
2
), pp.
260
268
.
57.
Bons
,
J. P.
, and
Kerrebrock
,
J. L.
,
1998
, “
Complementary Velocity and Heat Transfer Measurements in a Rotating Cooling Passage with Smooth Walls
,”
ASME
Paper No. 98-GT-464.
58.
Son
,
S. Y.
,
Kihm
,
K. D.
, and
Han
,
J. C.
,
2002
, “
PIV Flow Measurements for Heat Transfer Characterization in Two-Pass Square Channels With Smooth and 90° Ribbed Walls
,”
Int. J. Heat Mass Transfer
,
45
(
24
), pp.
4809
4822
.
59.
Coletti
,
F.
,
Irene Cresci
,
I.
, and
Arts
,
T.
,
2012
, “
Time-Resolved PIV Measurements of Turbulent Flow in Rotating Rib-Roughened Channel With Coriolis and Buoyancy Forces
,”
ASME
Paper No. GT2012-69406.
60.
Azad
,
G. S.
,
Uddin
,
J. M.
,
Han
,
J. C.
,
Moon
,
H. K.
, and
Glezer
,
B.
,
2002
, “
Heat Transfer in a Two-Pass Rectangular Rotating Channel With 45-Degree Angled Rib Turbulators
,”
ASME J. Turbomach.
,
124
(
2
), pp.
251
259
.
61.
Wright
,
L. M.
,
Fu
,
W. L.
, and
Han
,
J. C.
,
2004
, “
Thermal Performance of Angled, V-Shaped and W-Shaped Rib Turbulators in Rotating Rectangular (AR=4.1) Cooling Channels
,”
ASME J. Turbomach.
,
126
(
4
), pp.
603
613
.
62.
Fu
,
W. L.
,
Wright
,
L. M.
, and
Han
,
J. C.
,
2005
, “
Heat Transfer in Two-Pass Rotating Rectangular Channels (AR=1:2 and AR=1:4) With 45° Angled Rib Turbulators
,”
ASME J. Turbomach.
,
127
(
3
), pp.
164
174
.
63.
Liu
,
Y. H.
,
Huh
,
M.
,
Rhee
,
D. H.
,
Han
,
J. C.
, and
Moon
,
H. K.
,
2009
, “
Heat Transfer in Leading Edge, Triangular Shaped Cooling Channels With Angled Ribs Under High Rotation Numbers
,”
ASME J. Turbomach.
,
131
(
4
), p.
041017
.
64.
Wright
,
L. M.
,
Fu
,
W. L.
, and
Han
,
J. C.
,
2005
, “
Influence of Entrance Geometry on Heat Transfer in Narrow Rectangular Cooling Channels (AR=4:1) With Angled Ribs
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
378
387
.
65.
Huh
,
M.
,
Liu
,
Y. H.
, and
Han
,
J. C.
,
2009
, “
Effect of Rib Height on Heat Transfer in a Two-Pass Rectangular Channel (AR= 1:4) With a Sharp Entrance at High Rotation Numbers
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4635
4649
.
66.
Huh
,
M.
,
Lei
,
J.
,
Liu
,
Y. H.
, and
Han
,
J. C.
,
2011
, “
High Rotation Number Effects on Heat Transfer in a Rectangular (AR= 2:1) Two-Pass Channel
,”
ASME J. Turbomach.
,
133
(
2
), p.
021001
.
67.
Chen
,
A. F.
,
Wu
,
H. W.
,
Wang
,
N.
, and
Han
,
J. C.
,
2017
, “
Heat Transfer in a Rotating Cooling Passage With Rib Turbulators and Tip Turning Vane
,”
Nineth World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics
, Iguazu Falls, Brazil, June 11–15, p. RS101092.
68.
Lei
,
J.
,
Li
,
S. J.
,
Han
,
J. C.
,
Zhang
,
L.
, and
Moon
,
H. K.
,
2013
, “
Heat Transfer in Rotating Multipass Rectangular Ribbed Channel With and Without a Turning Vane
,”
ASME J. Heat Transfer
,
135
(4), p.
041930
.
69.
Wu
,
H. W.
,
Zirakzadeh
,
H.
,
Han
,
J. C.
,
Zhang
,
L.
, and
Moon
,
H. K.
,
2018
, “
Heat Transfer in a Rib and Pin Roughened Rotating Multi-Pass Channel With Hub Turning Vane and Trailing-Edge Slot Ejection
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(4), p.
021011
.
70.
Rallabandi
,
A. P.
,
Lei
,
J.
,
Han
,
J. C.
,
Azad
,
S.
, and
Lee
,
C. P.
,
2014
, “
Heat Transfer Measurements in Rotating Blade-Shape Serpentine Coolant Passages With Ribbed Walls at High Reynolds Numbers
,”
ASME J. Turbomach.
,
136
(
9
), p.
091004
.
71.
Yang
,
S. F.
,
Han
,
J. C.
,
Azad
,
S.
, and
Lee
,
C. P.
,
2015
, “
Heat Transfer in Rotating Serpentine Coolant Passage With Ribbed Walls at Low Mach Numbers
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
3
), p.
011013
.
72.
Chupp
,
R. E.
,
Helms
,
H. E.
,
McFadden
,
P. W.
, and
Brown
,
T. R.
,
1969
, “
Evaluation of Internal Heat Transfer Coefficients for Impingement Cooled Turbine Airfoils
,”
AIAA J. Aircr.
,
6
(
3
), pp.
203
208
.
73.
Metzger
,
D. E.
,
Florschuetz
,
L. W.
,
Takeuchi
,
D. I.
,
Behee
,
R. D.
, and
Berry
,
R. A.
,
1979
, “
Heat Transfer Characteristics for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME J. Heat Transfer
,
101
(
3
), pp.
526
531
.
74.
Taslim
,
M. E.
,
Setayeshgar
,
L.
, and
Spring
,
S. D.
,
2001
, “
An Experimental Evaluation of Advanced Leading Edge Impingement Cooling Concepts
,”
ASME J. Turbomach.
,
123
(
1
), pp.
147
153
.
75.
Wang
,
N.
,
Chen
,
A. F.
,
Zhang
,
M.
, and
Han
,
J. C.
,
2017
, “
Turbine Blade Leading Edge Cooling With One Row of Normal or Tangential Impinging Jets
,”
ASME
Paper No. GT2017-63809.
76.
Mattern
,
C.
, and
Hennecke
,
D. K.
,
1996
, “
The Influence of Rotation on Impingement Cooling
,”
ASME
Paper No. 96-GT-161.
77.
Glezer
,
B.
,
Moon
,
H. K.
,
Kerrebrock
,
J.
,
Bons
,
J.
, and
Guenette
,
G.
,
1998
, “
Heat Transfer in a Rotating Radial Channel with Swirling Internal Flow
,”
ASME
Paper No. 98-GT-214.
78.
Parsons
,
J. A.
,
Han
,
J. C.
, and
Lee
,
C. P.
,
1998
, “
Rotation Effect on Jet Impingement Heat Transfer in Smooth Rectangular Channels With Heated Target Walls and Radially Outward Crossflow
,”
Int. J. Heat Mass Transfer
,
41
(
13
), pp.
2059
2071
.
79.
Akella
,
K.
, and
Han
,
J. C.
,
1999
, “
Impingement Cooling in Rotating Two-Pass Rectangular Channels With Ribbed Target Walls
,”
AIAA J. Thermophys. Heat Transfer
,
13
(
3
), pp.
364
371
.
80.
Metzger
,
D. E.
,
Berry
,
R. A.
, and
Bronson
,
J. P.
,
1982
, “
Developing Heat Transfer in Rectangular Ducts With Staggered Arrays of Short Pin Fins
,”
ASME J. Heat Transfer
,
104
(
4
), pp.
700
706
.
81.
Chyu
,
M. K.
,
Hsing
,
Y. C.
, and
Natarajan
,
V.
,
1998
, “
Convective Heat Transfer of Cubic Fin Arrays in a Narrow Channel
,”
ASME J. Turbomach.
,
120
(
2
), pp.
362
367
.
82.
Wright
,
L. M.
,
Lee
,
E.
, and
Han
,
J. C.
,
2004
, “
Effect of Rotation on Heat Transfer in Rectangular Channels With Pin-Fins
,”
AIAA J. Thermophys. Heat Transfer
,
18
(
2
), pp.
263
272
.
83.
Chang
,
S. W.
,
Liou
,
T. M.
,
Chiou
,
S. F.
, and
Chang
,
S. F.
,
2008
, “
Heat Transfer in High-Speed Rotating Trapezoidal Duct With Rib-Roughened Surfaces and Air Bleeds From the Wall on the Apical Side
,”
ASME J. Heat Transfer
,
130
(
6
), p.
061702
.
84.
Rallabandi
,
A. P.
,
Liu
,
Y. H.
, and
Han
,
J. C.
,
2011
, “
Heat Transfer in Trailing Edge Wedge-Shaped Pin-Fin Channels With Slot Ejection Under High Rotation Numbers
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
2
), p.
021007
.
85.
Mahmood
,
G. I.
,
Hill
,
M. L.
,
Nelson
,
D. L.
,
Ligrani
,
P. M.
,
Moon
,
H. K.
, and
Glezer
,
B.
,
2001
, “
Local Heat Transfer and Flow Structure on and Above a Dimpled Surface in a Channel
,”
ASME J. Turbomach.
,
123
(
1
), pp.
115
123
.
86.
Zhou
,
F.
, and
Acharya
,
S.
,
2001
, “
Mass/Heat Transfer in Dimpled Two-Pass Coolant Passages With Rotation
,”
Ann. N. Y. Acad. Sci.
,
934
(1), pp.
424
431
.
87.
Griffith
,
T. S.
,
Al-Hadhrami
,
L.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer in Rotating Rectangular Cooling Channels (AR = 4) With Dimples
,”
ASME J. Turbomach.
,
125
(
3
), pp.
555
563
.
88.
Prakash
,
C.
, and
Zerkle
,
R.
,
1995
, “
Prediction of Turbulent Flow and Heat Transfer in a Radially Rotating Square Duct
,”
ASME J. Turbomach.
,
117
(
2
), pp.
255
261
.
89.
Lin
,
Y. L.
,
Shih
,
T. I.-P.
,
Stephens
,
M. A.
, and
Chyu
,
M. K.
,
2001
, “
A Numerical Study of Flow and Heat Transfer in a Smooth and Ribbed U-Duct With and Without Rotation
,”
ASME J. Heat Transfer
,
123
(
2
), pp.
219
232
.
90.
Chen
,
H. C.
,
Jang
,
Y. J.
, and
Han
,
J. C.
,
2000
, “
Computation of Flow and Heat Transfer in Rotating Two-Pass Square Channels by a Reynolds Stress Model
,”
Int. J. Heat Mass Transfer
,
43
(
9
), pp.
1603
1616
.
91.
Jang
,
Y. J.
,
Chen
,
H. C.
, and
Han
,
J. C.
,
2001
, “
Flow and Heat Transfer in a Rotating Square Channel With 45-Degree Angled Ribs by Reynolds Stress Turbulence Model
,”
ASME J. Turbomach.
,
123
(
1
), pp.
124
132
.
92.
Su
,
G.
,
Chen
,
H. C.
,
Han
,
J. C.
, and
Heidmann
,
J. D.
,
2004
, “
Computation of Flow and Heat Transfer in Rotating Two-Pass Rectangular Channels (AR = 1:1, 1:2, and 1:4) by a Reynolds Stress Turbulence Model
,”
Int. J. Heat Mass Transfer
,
47
(
26
), pp.
5665
5683
.
93.
Viswanathan
,
A.
, and
Tafti
,
D.
,
2006
, “
Large Eddy Simulation of Fully Developed Flow and Heat Transfer in a Rotating Duct With 45-Degree Ribs
,”
ASME
Paper No. GT2006-90229.
94.
Haven
,
B. A.
,
Yamagata
,
D. K.
,
Kurosaka
,
M.
,
Yamawaki
,
S.
, and
Maya
,
T.
,
1997
, “
Anti-Kidney Pair of Vortices in Shaped Holes and Their Influence on Film Cooling Effectiveness
,”
ASME
Paper No. 97-GT-45.
95.
Ito
,
S.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1978
, “
Film Cooling of a Gas Turbine Blade
,”
ASME J. Eng. Power
,
100
(
3
), pp.
476
481
.
96.
Camci
,
C.
, and
Arts
,
T.
,
1985
, “
Short-Duration Measurements and Numerical Simulation of Heat Transfer Along the Suction Side of a Gas Turbine Blade
,”
ASME J. Eng. Gas Turbines Power
,
107
(
4
), pp.
1016
1021
.
97.
Nirmalan
,
N. V.
, and
Hylton
,
L. D.
,
1990
, “
An Experimental Study of Turbine Vane Heat Transfer With Leading Edge and Downstream Film Cooling
,”
ASME J. Turbomach.
,
112
(
3
), pp.
477
487
.
98.
Ames
,
F. E.
,
1998
, “
Aspects of Vane Film Cooling With High Turbulence—Part II: Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
120
(
4
), pp.
777
784
.
99.
Ethridge
,
M. I.
,
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
,
2001
, “
Scaling of Performance for Varying Density Ratio Coolants on an Airfoil With Strong Curvature and Pressure Gradient Effects
,”
ASME J. Turbomach.
,
123
(
2
), pp.
231
237
.
100.
Zhang
,
L.
, and
Jaiswal
,
R.
,
2001
, “
Turbine Nozzle Endwall Film Cooling Study Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
123
(
4
), pp.
730
738
.
101.
Ahn
,
J. Y.
,
Mhetras
,
S. P.
, and
Han
,
J. C.
,
2005
, “
Film-Cooling Effectiveness on a Gas Turbine Blade Tip Using Pressure Sensitive Paint
,”
ASME J. Heat Transfer
,
127
(
5
), pp.
521
530
.
102.
Mehendale
,
A. B.
,
Han
,
J. C.
,
Ou
,
S.
, and
Lee
,
C. P.
,
1994
, “
Unsteady Wake Over a Linear Turbine Blade Cascade With Air and CO2 Film Injection—Part 2: Effect on Film Effectiveness and Heat Transfer Distribution
,”
ASME J. Turbomach.
,
116
(
4
), pp.
730
737
.
103.
Du
,
H.
,
Han
,
J. C.
, and
Ekkad
,
S. V.
,
1998
, “
Effect of Unsteady Wake on Detailed Heat Transfer Coefficient and Film Effectiveness Distributions for a Turbine Blade
,”
ASME J. Turbomach.
,
120
(
4
), pp.
808
817
.
104.
Li
,
S. J.
,
Yang
,
S. F.
,
Han
,
J. C.
,
Zhang
,
L.
, and
Moon
,
H. K.
,
2016
, “
Turbine Blade Surface Phantom Cooling From Upstream Nozzle Trailing Edge Ejection
,”
AIAA J. Thermophys. Heat Transfer
,
30
(
4
), pp.
770
781
.
105.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.
106.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Adiabatic Wall Effectiveness Measurements of Film Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
557
563
.
107.
Teng
,
S.
,
Han
,
J. C.
, and
Poinsatte
,
P.
,
2001
, “
Effect of Film-Hole Shape on Turbine Blade Film Cooling Performance
,”
AIAA J. Thermophys. Heat Transfer
,
15
(
3
), pp.
257
265
.
108.
Mhetras
,
S. P.
,
Han
,
J. C.
, and
Rudolph
,
R.
,
2012
, “
Effect of Flow Parameter Variations on Full Coverage Film-Cooling Effectiveness for a Gas Turbine Blade
,”
ASME J. Turbomach.
,
134
(
1
), p.
011004
.
109.
Gao
,
Z.
,
Narzary
,
D. P.
, and
Han
,
J. C.
,
2009
, “
Film Cooling on a Gas Turbine Blade Pressure Side or Suction Side With Compound Angle Shaped Holes
,”
ASME J. Turbomach.
,
131
(
1
), p.
011019
.
110.
Narzary
,
D. P.
,
Liu
,
K. C.
,
Rallabandi
,
A. P.
, and
Han
,
J. C.
,
2012
, “
Influence of Coolant Density on Turbine Blade Film-Cooling Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
134
(
3
), p.
031006
.
111.
Luckey
,
D. W.
,
Winstanley
,
D. K.
,
Hames
,
G. J.
, and
L'Ecuiyer
,
M. R.
,
1977
, “
Stagnation Region Gas Film Cooling for Turbine Blade Leading-Edge Applications
,”
AIAA J. Aircr.
,
14
(
5
), pp.
494
501
.
112.
Mick
,
W. J.
, and
Mayle
,
R. E.
,
1988
, “
Stagnation Film Cooling and Heat Transfer Including Its Effect Within the Hole Pattern
,”
ASME J. Turbomach.
,
110
(
1
), pp.
66
72
.
113.
Mehendale
,
A. B.
, and
Han
,
J. C.
,
1992
, “
Influence of High Mainstream Turbulence on Leading Edge Film Cooling Heat Transfer
,”
ASME J. Turbomach.
,
114
(
4
), pp.
707
715
.
114.
Ekkad
,
S. V.
,
Han
,
J. C.
, and
Du
,
H.
,
1998
, “
Detailed Film Cooling Measurements on a Cylindrical Leading Edge Model: Effect of Free-Stream Turbulence and Coolant Density
,”
ASME J. Turbomach.
,
120
(
4
), pp.
799
807
.
115.
Li
,
S. J.
,
Yang
,
S. F.
, and
Han
,
J. C.
,
2014
, “
Effect of Coolant Density on Leading Edge Showerhead Film Cooling Using the Pressure Sensitive Paint Measurement Technique
,”
ASME J. Turbomach.
,
136
(5), p.
051011
.
116.
Chowdhury
,
N. H. K.
,
Qureshi
,
S. A.
, and
Han
,
J. C.
,
2017
, “
Influence of Leading Edge Profile on Showerhead Film Cooling of Turbine Blade
,”
Int. J. Heat Mass Transfer
,
115
(
Pt. B
), pp.
895
908
.
117.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
2000
, “
Film Cooling Measurements on Cylindrical Models With Simulated Thermal Barrier Coating Spallation
,”
AIAA J. Thermophys. Heat Transfer
,
14
(
2
), pp.
194
200
.
118.
Azad
,
G. M. S.
,
Han
,
J. C.
, and
Boyle
,
R. J.
,
2000
, “
Heat Transfer and Flow on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
,
122
(
4
), pp.
725
732
.
119.
Kwak
,
J. S.
,
Ahn
,
J. Y.
,
Han
,
J. C.
,
Lee
,
C. P.
,
Bunker
,
R. S.
,
Boyle
,
R. J.
, and
Gaugler
,
R. E.
,
2003
, “
Heat Transfer Coefficients on the Squealer-Tip and Near-Tip Regions of a Gas Turbine Blade With Single or Double Squealer
,”
ASME J. Turbomach.
,
125
(
4
), pp.
778
787
.
120.
Kim
,
Y. W.
,
Downs
,
J. P.
,
Soechting
,
F. O.
,
Abdel-Messeh
,
W.
,
Steuber
,
G. D.
, and
Tanrikut
,
S.
,
1995
, “
Darryl E. Metzger Memorial Session Paper: A Summary of the Cooled Turbine Blade Tip Heat Transfer and Film Effectiveness Investigations Performed by Dr. D. E. Metzger
,”
ASME J. Turbomach.
,
117
(
1
), pp. 1–11.
121.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer Coefficient and Film Cooling Effectiveness on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
,
125
(
4
), pp.
648
657
.
122.
Mhetras
,
S. P.
,
Narzary
,
D.
,
Gao
,
Z.
, and
Han
,
J. C.
,
2008
, “
Effect of a Cut-Back Squealer and Cavity Depth on Film-Cooling Effectiveness on a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
,
130
(
2
), p.
021002
.
123.
Taslim
,
M.
,
Spring
,
S.
, and
Mehlman
,
B.
,
1992
, “
Experimental Investigation of Film Cooling Effectiveness for Slots of Various Exit Geometries
,”
J. Thermophys. Heat Transfer
,
6
(
2
), pp.
302
307
.
124.
Martini
,
P.
,
Schulz
,
A.
, and
Bauer
,
H.
,
2006
, “
Film Cooling Effectiveness and Heat Transfer on the Trailing Edge Cutback of Gas Turbine Airfoils With Various Internal Cooling Designs
,”
ASME J. Turbomach.
,
128
(
1
), pp.
196
205
.
125.
Choi
,
J.
,
Mhetras
,
S.
,
Han
,
J. C.
,
Lau
,
S. C.
, and
Rudolph
,
R.
,
2008
, “
Film Cooling and Heat Transfer on Two Cutback Trailing Edge Models With Internal Perforated Blockages
,”
ASME J. Heat Transfer
,
130
(
1
), p.
012201
.
126.
Gao
,
Z.
,
Rhee
,
D. H.
, and
Han
,
J. C.
,
2013
, “
Turbine Blade Trailing Edge Film Cooling Using PSP Technique
,”
Int. J. Transp. Phenom.
,
13
(
3
), pp.
193
205
.
127.
Langston
,
L.
,
1980
, “
Crossflows in a Turbine Cascade Passage
,”
ASME J. Eng. Power
,
102
(
4
), pp.
866
874
.
128.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1996
, “
Heat Transfer Committee Best Paper of 1995 Award: Distribution of Film-Cooling Effectiveness on a Turbine Endwall Measured Using the Ammonia and Diazo Technique
,”
ASME J. Turbomach.
,
118
(
4
), pp. 613–621.
129.
Oke
,
R.
,
Simon
,
T.
,
Shih
,
T.
,
Zhu
,
B.
,
Lin
,
Y.
, and
Chyu
,
M.
,
2002
, “
Film Cooling Experiments with Flow Introduced Upstream of a First Stage Nozzle Guide Vane through Slots of Various Geometries
,”
ASME
Paper No. GT2002-30169.
130.
Colban
,
W.
,
Thole
,
K. A.
, and
Haendler
,
M.
,
2008
, “
A Comparison of Cylindrical and Fan-Shaped Film-Cooling Holes on a Vane Endwall at Low and High Freestream Turbulence Levels
,”
ASME J. Turbomach.
,
130
(
3
), p.
031007
.
131.
Gao
,
Z.
,
Narzary
,
D.
, and
Han
,
J. C.
,
2009
, “
Turbine Blade Platform Film Cooling With Typical Stator-Rotor Purge Flow and Discrete-Hole Film Cooling
,”
ASME J. Turbomach.
,
131
(
4
), p.
041004
.
132.
Liu
,
K.
,
Yang
,
S. F.
, and
Han
,
J. C.
,
2014
, “
Influence of Coolant Density on Turbine Platform Film Cooling With Stator-Rotor Purge Flow and Compound-Angle Holes
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
4
), p.
041007
.
133.
Chen
,
A. F.
,
Shiau
,
C. C.
, and
Han
,
J. C.
,
2017
, “
Turbine Blade Platform Film Cooling With Fan-Shaped Holes Under Simulated Swirl Purge Flow and Slashface Leakage Conditions
,”
ASME J. Turbomach.
,
140
(
1
), p.
011006
.
134.
Chowdhury
,
N. H. K.
,
Shiau
,
C. C.
,
Han
,
J. C.
,
Zhang
,
L.
, and
Moon
,
H. K.
,
2017
, “
Turbine Vane Endwall Film Cooling With Slashface Leakage and Discrete Hole Configuration
,”
ASME J. Turbomach.
,
139
(
6
), p.
061003
.
135.
Chowdhury
,
N. H. K.
,
Shiau
,
C. C.
,
Han
,
J. C.
,
Zhang
,
L.
, and
Moon
,
H. K.
,
2017
, “
Turbine Vane Endwall Film Cooling Study From Cross-Row Configuration With Simulated Upstream Inlet Leakage Flow
,”
ASME
Paper No. GT2017-63145.
136.
Shiau
,
C. C.
,
Chen
,
A. F.
,
Han
,
J. C.
,
Lee
,
C. P.
, and
Azad
,
S.
,
2017
, “
Film Effectiveness Comparison on Full-Scale Turbine Vane Endwalls Using PSP Technique
,”
ASME J. Turbomach.
,
140
(
2
), p.
021009
.
137.
Dring
,
R.
,
Blair
,
M.
, and
Joslyn
,
H.
,
1980
, “
An Experimental Investigation of Film Cooling on a Turbine Rotor Blade
,”
ASME J. Eng. Power
,
102
(
1
), pp.
81
–8
7
.
138.
Takeishi
,
K.
,
Aoki
,
S.
,
Sato
,
T.
, and
Tsukagoshi
,
K.
,
1992
, “
Film Cooling on a Gas Turbine Rotor Blade
,”
ASME J. Turbomach.
,
114
(
4
), pp.
828
834
.
139.
Abhari
,
R.
, and
Epstein
,
A.
,
1994
, “
An Experimental Study of Film Cooling in a Rotating Transonic Turbine
,”
ASME J. Turbomach.
,
116
(
1
), pp.
63
70
.
140.
Ahn
,
J. Y.
,
Schobeiri
,
M. T.
,
Han
,
J. C.
, and
Moon
,
H. K.
,
2007
, “
Film Cooling Effectiveness on the Leading Edge of a Rotating Blade Using Pressure Sensitive Paint
,”
Int. J. Heat Mass Transfer
,
50
(
1–2
), pp.
15
25
.
141.
Ahn
,
J.
,
Schobeiri
,
M.
,
Han
,
J. C.
, and
Moon
,
H.
,
2006
, “
Film Cooling Effectiveness on the Leading Edge Region of a Rotating Turbine Blade With Two Rows of Film Cooling Holes Using Pressure Sensitive Paint
,”
ASME J. Heat Transfer
,
128
(
9
), pp.
879
888
.
142.
Suryanarayanan
,
A.
,
Mhetras
,
S. P.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2009
, “
Film-Cooling Effectiveness on a Rotating Blade Platform
,”
ASME J. Turbomach.
,
131
(
1
), p.
011014
.
143.
Suryanarayanan
,
A.
,
Ozturk
,
B.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2010
, “
Film-Cooling Effectiveness on a Rotating Turbine Platform Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
132
(
4
), p.
041001
.
144.
Rezasoltani
,
M.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2014
, “
Experimental Investigation of the Effect of Purge Flow on Aerodynamic Performance and Film Cooling Effectiveness on a Rotating Turbine With Non-Axisymmetric Endwall Contouring
,”
ASME J. Turbomach.
,
136
(
9
), p.
091009
.
145.
Rezasoltani
,
M.
,
Lu
,
K.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2015
, “
A Combined Experimental and Numerical Study of the Turbine Blade Tip Film Cooling Effectiveness Under Rotation Condition
,”
ASME J. Turbomach.
,
137
(
5
), p.
051009
.
You do not currently have access to this content.