Foams, three-dimensional (3D)-printed cellular and honeycomb structures, and very oblate particles dispersed in a matrix are the examples of heterogeneous media with thin-wall morphology. Phase boundaries can also be considered by this approach. Statistical description is proposed to estimate the effective radiative properties of such media. Three orientation models are studied: (i) isotropic, (ii) surface elements parallel to a plane, and (iii) surface elements parallel to an axis. Radiative transfer equations (RTEs) are obtained and analyzed in the framework of the homogeneous phase approach (HPA) and the multiphase approach (MPA). Analytical expressions are obtained for the absorption, extinction, and scattering coefficients, the scattering phase function, and the radiative thermal conductivity for very oblate particles dispersed in an absorbing scattering matrix. The reflective properties of the platelets and their preferential orientation can be used to optimize the radiative thermal conductivity.

References

References
1.
Brendel
,
H.
,
Seifert
,
G.
, and
Raether
,
F.
,
2017
, “
Heat Transfer Properties of Hollow-Fiber Insulation Materials at High Temperatures
,”
J. Thermophys. Heat Transfer
,
31
(
2
), pp.
463
472
.
2.
Wang
,
B. X.
, and
Zhao
,
C. Y.
,
2017
, “
Effect of Anisotropy on Thermal Radiation Transport in Porous Ceramics
,”
Int. J. Therm. Sci.
,
111
, pp.
301
309
.
3.
Alkandry
,
H.
,
Boyd
,
I. D.
, and
Martin
,
A.
,
2014
, “
Comparison of Transport Properties Models for Flowfield Simulations of Ablative Heat Shields
,”
J. Thermophys. Heat Transfer
,
28
(
4
), pp.
569
582
.
4.
Marti
,
J.
,
Roesle
,
M.
, and
Steinfeld
,
A.
,
2014
, “
Combined Experimental-Numerical Approach to Determine Radiation Properties of Particle Suspensions
,”
ASME J. Heat Transfer
,
136
(
9
), p.
092701
.
5.
Boley
,
C. D.
,
Khairallah
,
S. A.
, and
Rubenchik
,
A. M.
,
2015
, “
Calculation of Laser Absorption by Metal Powders in Additive Manufacturing
,”
Appl. Opt.
,
54
(
9
), pp.
2477
2482
.
6.
Malinka
,
A. V.
,
2014
, “
Light Scattering in Porous Materials: Geometrical Optics and Stereological Approach
,”
J. Quant. Spectrosc. Radiat. Transfer
,
141
, pp.
14
23
.
7.
Jacques
,
S. L.
,
2013
, “
Optical Properties of Biological Tissues: A Review
,”
Phys. Med. Biol.
,
58
(
11
), pp.
R37
R61
.
8.
Mishchenko
,
M. I.
,
Dlugach
,
J. M.
,
Yurkin
,
M. A.
,
Bi
,
L.
,
Cairns
,
B.
,
Liu
,
L.
,
Panetta
,
R. L.
,
Travis
,
L. D.
,
Yang
,
P.
, and
Zakharova
,
N. T.
,
2016
, “
First-Principles Modeling of Electromagnetic Scattering by Discrete and Discretely Heterogeneous Random Media
,”
Phys. Rep.
,
632
, pp.
1
75
.
9.
van de Hulst
,
H. C.
,
1981
,
Light Scattering by Small Particles
,
Dover
,
Mineola, NY
.
10.
Modest
,
M. F.
,
2013
,
Radiative Heat Transfer
,
Academic Press
,
San Diego, CA
.
11.
Lee
,
S. C.
, and
Cunnington
,
G. R.
,
2000
, “
Conduction and Radiation Heat Transfer in High-Porosity Fiber Thermal Insulation
,”
J. Thermophys. Heat Transfer
,
14
(
2
), pp.
121
136
.
12.
Wait
,
J. R.
,
1955
, “
Scattering of a Plane Wave From a Circular Dielectric Cylinder at Oblique Incidence
,”
Can. J. Phys.
,
33
(
5
), pp.
189
195
.
13.
Lind
,
A. C.
, and
Greenberg
,
J. M.
,
1966
, “
Electromagnetic Scattering by Obliquely Oriented Cylinders
,”
J. Appl. Phys.
,
37
(
8
), pp.
3195
3203
.
14.
Howell
,
J. R.
,
Siegel
,
R.
, and
Menguc
,
M. P.
,
2011
,
Thermal Radiation Heat Transfer
,
CRC Press
,
Boca Raton, FL
.
15.
Shukla
,
D. K.
,
Kasisomayajula
,
S. V.
, and
Parameswaran
,
V.
,
2008
, “
Epoxy Composites Using Functionalized Platelets as Reinforcements
,”
Compos. Sci. Tech.
,
68
(
14
), pp.
3055
3063
.
16.
Sauceau
,
M.
,
Fages
,
J.
,
Common
,
A.
,
Nikitine
,
C.
, and
Rodier
,
E.
,
2011
, “
New Challenges in Polymer Foaming: A Review of Extrusion Processes Assisted by Supercritical Carbon Dioxide
,”
Prog. Polym. Sci.
,
36
(
6
), pp.
749
766
.
17.
Huo
,
W.-L.
,
Zhang
,
X.-Y.
,
Chen
,
Y.-G.
,
Lu
,
Y.-J.
,
Liu
,
W.-T.
,
Xi
,
X.-Q.
,
Wang
,
Y.-L.
,
Xu
,
J.
, and
Yang
,
J.-L.
,
2016
, “
Highly Porous Zirconia Ceramic Foams With Low Thermal Conductivity From Particle-Stabilized Foams
,”
J. Am. Ceram. Soc.
,
99
(
11
), pp.
3512
3515
.
18.
Shiomi
,
M.
,
Imagama
,
S.
,
Osakada
,
K.
, and
Matsumoto
,
R.
,
2010
, “
Fabrication of Aluminum Foams From Powder by Hot Extrusion and Foaming
,”
J. Mater. Process. Technol.
,
210
(
9
), pp.
1203
1208
.
19.
Li
,
J. E.
, and
Wang
,
B.
,
2014
, “
Equivalent Thermal Conductivity of Open-Cell Ceramic Foams at High Temperatures
,”
Int. J. Thermophys.
,
35
(
1
), pp.
105
122
.
20.
Cunsolo
,
S.
,
Coquard
,
R.
,
Baillis
,
D.
, and
Bianco
,
N.
,
2016
, “
Radiative Properties Modeling of Open Cell Solid Foam: Review and New Analytical Law
,”
Int. J. Therm. Sci.
,
104
, pp.
122
134
.
21.
Cunsolo
,
S.
,
Coquard
,
R.
,
Baillis
,
D.
,
Chiu
,
W. K. S.
, and
Bianco
,
N.
,
2017
, “
Radiative Properties of Irregular Open Cell Solid Foams
,”
Int. J. Therm. Sci.
,
117
, pp.
77
89
.
22.
Chantarapanich
,
N.
,
Laohaprapanon
,
A.
,
Wisutmethangoon
,
S.
,
Jiamwatthanachai
,
P.
,
Chalermkarnnon
,
P.
,
Sucharitpwatskul
,
S.
,
Puttawibul
,
P.
, and
Sitthiseripratip
,
K.
,
2014
, “
Fabrication of Three-Dimensional Honeycomb Structure for Aeronautical Applications Using Selective Laser Melting: A Preliminary Investigation
,”
Rapid Prototyping J.
,
20
(
6
), pp.
551
558
.
23.
Studart
,
A. R.
,
2016
, “
Additive Manufacturing of Biologically-Inspired Materials
,”
Chem. Soc. Rev.
,
45
(
2
), pp.
359
376
.
24.
Tancrez
,
M.
, and
Taine
,
J.
,
2004
, “
Direct Identification of Absorption and Scattering Coefficients and Phase Function of a Porous Medium by a Monte Carlo Technique
,”
Int. J. Heat Mass Transfer
,
47
(
2
), pp.
373
383
.
25.
Coquard
,
R.
, and
Baillis
,
D.
,
2005
, “
Radiative Characteristics of Beds of Spheres Containing an Absorbing and Scattering Medium
,”
J. Thermophys. Heat Transfer
,
19
(
2
), pp.
226
234
.
26.
Rombouts
,
M.
,
Froyen
,
L.
,
Gusarov
,
A. V.
,
Bentefour
,
E. H.
, and
Glorieux
,
C.
,
2005
, “
Light Extinction in Metallic Powder Beds: Correlation With Powder Structure
,”
J. Appl. Phys.
,
98
(
1
), p.
013533
.
27.
Dauvois
,
Y.
,
Rochais
,
D.
,
Enguehard
,
F.
, and
Taine
,
J.
,
2017
, “
Statistical Radiative Modeling of a Porous Medium With Semi Transparent and Transparent Phases: Application to a Felt of Overlapping Fibers
,”
Int. J. Heat Mass Transfer
,
106
, pp.
601
618
.
28.
Frankel
,
A.
,
Iaccarino
,
G.
, and
Mani
,
A.
,
2016
, “
Convergence of the Bouguer-Beer Law for Radiation Extinction in Particulate Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
182
, pp.
45
54
.
29.
Gusarov
,
A. V.
,
2008
, “
Homogenization of Radiation Transfer in Two-Phase Media With Irregular Phase Boundaries
,”
Phys. Rev. B
,
77
(
14
), p.
144201
.
30.
Randrianalisoa
,
J.
, and
Baillis
,
D.
,
2010
, “
Radiative Transfer in Dispersed Media: Comparison Between Homogeneous Phase and Multiphase Approaches
,”
ASME J. Heat Transfer
,
132
(
2
), p.
023405
.
31.
Consalvi
,
J. L.
,
Porterie
,
B.
, and
Loraud
,
J. C.
,
2002
, “
A Formal Averaging Procedure for Radiation Heat Transfer in Particulate Media
,”
Int. J. Heat Mass Transfer
,
45
(
13
), pp.
2755
2768
.
32.
Lipinski
,
W.
,
Petrasch
,
J.
, and
Haussener
,
S.
,
2010
, “
Application of the Spatial Averaging Theorem to Radiative Heat Transfer in Two-Phase Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
111
(
1
), pp.
253
258
.
33.
Lipinski
,
W.
,
Keene
,
D.
,
Haussener
,
S.
, and
Petrasch
,
J.
,
2010
, “
Continuum Radiative Transfer Modelling in Media Consisting of Optically Distinct Components in the Limit of Geometric Optics
,”
J. Quant. Spectrosc. Radiat. Transfer
,
111
, pp.
2474
2480
.
34.
Gusarov
,
A. V.
, and
Kruth
,
J.-P.
,
2005
, “
Modelling of Radiation Transfer in Metallic Powders at Laser Treatment
,”
Int. J. Heat Mass Transfer
,
48
(
16
), p.
3423
.
35.
Gusarov
,
A. V.
, and
Smurov
,
I.
,
2010
, “
Homogenized Models of Radiation Transfer in Multiphase Media
,”
Integral Methods in Science and Engineering
, Vol.
2
,
C.
Constanda
and
M. E.
Perez
, eds.,
Birkhauser
,
Boston, MA
, pp.
183
192
.
36.
Gusarov
,
A. V.
,
2011
, “
Differential Approximations to the Radiation Transfer Equation by Chapman-Enskog Expansion
,”
ASME J. Heat Transfer
,
133
(
8
), p.
082701
.
37.
Gusarov
,
A. V.
,
2010
, “
Model of Radiative Heat Transfer in Heterogeneous Multiphase Media
,”
Phys. Rev. B
,
81
(
6
), p.
064202
.
38.
Gusarov
,
A. V.
, “
Statistical Approach to Radiative Transfer in the Heterogeneous Media of Thin-Wall Morphology—II: Applications
,”
ASME J. Heat Transfer
(accepted).
39.
Lai
,
H. M.
,
Wong
,
W. Y.
, and
Wong
,
W. H.
,
2004
, “
Extinction Paradox and Actual Power Scattering in Light Beam Scattering: A Two-Dimensional Study
,”
J. Opt. Soc. Am. A
,
21
(
12
), pp.
2324
2333
.
40.
Rosseland
,
S.
,
1936
,
Theoretical Astrophysics
,
Oxford University Press
,
London
.
You do not currently have access to this content.