Two-dimensional computational fluid dynamics simulations of mixed convection heat transfer through aluminum metal foams partially filled in a vertical channel are carried out numerically. The objective of the present study is to quantify the effect of metal foam thickness on the fluid flow characteristics and the thermal performance in a partially filled vertical channel with metal foams for a fluid velocity range of 0.05–3 m/s. The numerical computations are performed for metal foam filled with 40%, 70%, and 100% by volume in the vertical channel for four different pores per inch (PPIs) of 10, 20, 30, and 45 with porosity values varying from 0.90 to 0.95. To envisage the characteristics of fluid flow and heat transfer, two different models, namely, Darcy Extended Forchheirmer (DEF) and Local thermal non-equilibrium, have been incorporated for the metal foam region. The numerical results are compared with experimental and analytical results available in the literature for the purpose of validation. The results of the parametric studies on vertical channel show that the Nusselt number increases with the increase of partial filling of metal foams. The thermal performance of the metal foams is reported in terms of Colburn j and performance factors.

References

References
1.
Xu
,
H. J.
,
Qu
,
Z. G.
,
Lu
,
T. J.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2011
, “
Thermal Modeling of Forced Convection in a Parallel-Plate Channel Partially Filled With Metallic Foams
,”
ASME J. Heat Transfer
,
133
(
9
), p.
092603
.
2.
Zhao
,
C. Y.
,
2012
, “
Review on Thermal Transport in High Porosity Cellular Metal Foams With Open Cells
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3618
3632
.
3.
Kamath
,
P. M.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2011
, “
Experimental Investigation of Flow Assisted Mixed Convection in High Porosity Foams in Vertical Channels
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5231
5241
.
4.
Boyd
,
B.
, and
Hooman
,
K.
,
2012
, “
Air Cooled Micro-Porous Heat Exchangers for Thermal Management of Fuel Cells
,”
Int. Commun. Heat Mass Transfer
,
39
(
3
), pp.
363
367
.
5.
Hajipour
,
M.
, and
Dehkordi
,
A. M.
,
2012
, “
Analysis of Nanofluid Heat Transfer in Parallel Plate Vertical Channels Partially Filled With Porous Medium
,”
Int. J. Therm. Sci.
,
55
, pp.
103
113
.
6.
Tamayol
,
A.
, and
Hooman
,
K.
,
2011
, “
Thermal Assessment of Forced Convection Through Metal Foam Heat Exchangers
,”
ASME J. Heat Transfer
,
133
(
11
), p. 0
11801
.
7.
Mancin
,
S.
,
Zilio
,
C.
,
Rossetto
,
L.
, and
Cavallini
,
A.
,
2012
, “
Foam Height Effects on Heat Transfer Performance of 20 ppi Aluminum Foams
,”
Appl. Therm. Eng.
,
49
, pp.
55
60
.
8.
Mancin
,
S.
,
Zilio
,
C.
,
Diani
,
A.
, and
Rossetto
,
L.
,
2012
, “
Experimental Air Heat Transfer and Pressure Drop Through Copper Foams
,”
Exp. Therm. Fluid Sci.
,
36
, pp.
224
232
.
9.
Kim
,
S. Y.
,
Paek
,
J. W.
, and
Kang
,
B. H.
,
2000
, “
Flow and Heat Transfer Correlations for Porous Fin in a Plate-Fin Heat Exchanger
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
572
578
.
10.
Kim
,
S. Y.
,
Kang
,
B. H.
, and
Kim
,
J. H.
,
2001
, “
Forced Convection From Aluminum Foam Materials in an Asymmetrically Heated Channel
,”
Int. J. Heat Mass Transfer
,
44
(
7
), pp.
1451
1454
.
11.
Calmidi
,
V.
, and
Mahajan
,
R.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
557
565
.
12.
Lin
,
W.
,
Xie
,
G.
,
Yuan
,
J.
, and
Sundén
,
B.
,
2016
, “
Comparison and Analysis of Heat Transfer in Aluminum Foam Using Local Thermal Equilibrium or Non-Equilibrium Model
,”
Heat Transfer Eng.
,
37
(
3–4
), pp.
314
322
.
13.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Zwick
,
F.
,
2003
, “
Metal Foams as Compact High Performance Heat Exchangers
,”
Mech. Mater.
,
35
(
12
), pp.
1161
1176
.
14.
Kamath
,
P. M.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2013
, “
Convection Heat Transfer From Aluminum and Copper Foams in a Vertical Channel—An Experimental Study
,”
Int. J. Therm. Sci.
,
64
, pp.
1
10
.
15.
Bernardo
,
B.
,
Ferraro
,
G.
,
Manca
,
O.
,
Marinelli
,
L.
, and
Nardini
,
S.
,
2014
, “
Mixed Convection in Horizontal Channels Partially Filled With Aluminium Foam Heated From below and With External Heat Losses on Upper Plate
,”
J. Phys.: Conf. Ser.
,
501
, p.
012005
.
16.
Hajipour
,
M.
, and
Dehkordi
,
A. M.
,
2014
, “
Mixed Convection Flow of Al2O3-H2O Nanofluid in a Channel Partially Filled With Porous Metal Foam: Experimental and Numerical Study
,”
Exp. Therm. Fluid Sci.
,
53
, pp.
49
56
.
17.
Sener
,
M.
,
Yataganbaba
,
A.
, and
Kurtbas
,
I.
,
2016
, “
Forchheimer Forced Convection in a Rectangular Channel Partially Filled With Aluminum Foam
,”
Exp. Therm. Fluid Sci.
,
75
, pp.
162
172
.
18.
Nazari
,
M.
,
Ashouri
,
M.
,
Kayhani
,
M. H.
, and
Tamayol
,
A.
,
2015
, “
Experimental Study of Convective Heat Transfer of a Nanofluid Through Pipe Filled With Metal Foam
,”
Int. J. Therm. Sci.
,
88
, pp.
33
39
.
19.
Ismail
,
S.
,
2015
, “
Numerical Investigation of Heat Transfer and Fluid Flow Behaviors of a Block Type Graphite Foam Heat Sink Inserted in a Rectangular Channel
,”
Appl. Therm. Eng.
,
78
, pp.
605
615
.
20.
Ahmed
,
A.
,
Turan
,
A.
, and
Nasser
,
A.
,
2015
, “
Developing Convective Flow in a Square Channel Partially Filled With a High Porosity Metal Foam and Rotating in a Parallel-Mode
,”
Int. J. Heat Mass Transfer
,
90
, pp.
578
590
.
21.
Gangapatnam
,
P.
,
Kurian
,
R.
, and
Venkateshan
,
S. P.
,
2018
, “
Numerical Simulation of Heat Transfer in Metal Foams
,”
Heat Mass Transfer
,
54
(
2
) pp.
553
562
.
22.
Lu
,
W.
,
Zhang
,
T.
, and
Yang
,
M.
,
2016
, “
Analytical Solution of Forced Convection Heat Transfer in Parallel-Plate Channel Partially Filled With Metallic Foams
,”
Int. J. Heat Mass Transfer
,
100
, pp.
718
727
.
23.
Lu
,
W.
,
Zhang
,
T.
,
Yang
,
M.
, and
Wu
,
Y.
,
2017
, “
Analytical Solutions of Force Convective Heat Transfer in Plate Heat Exchangers Partially Filled With Metal Foams
,”
Int. J. Heat Mass Transfer
,
110
, pp.
476
481
.
24.
Ghosh
,
I.
,
2008
, “
Heat-Transfer Analysis of High Porosity Open-Cell Metal Foam
,”
ASME J. Heat Transfer
,
130
(
3
), p.
034501
.
25.
ANSYS Fluent
,
2017
, “ANSYS® [ANSYS Fluent], 15.0, Help System, User's Guide/Theory Guide,” ANSYS, Inc., Canonsburg, PA, http://www.ansys.com/Products/Fluids/ANSYS-Fluent
26.
Walters
,
D. K.
, and
Coklja
,
D.
,
2008
, “
A Three-Equation Eddy Viscosity Model for Reynolds-Averaged Navier-Stokes Simulations of Transitional Flows
,”
ASME J. Fluids Eng.
,
130
(
12
), p.
121401
.
27.
Nield
,
D. A.
, and
Bejan
,
A.
,
2005
,
Convection in Porous Media
,
3rd ed.
,
Springer
,
Berlin
.
28.
Zukauskas
,
A. A.
,
1987
, “
Convective Heat Transfer in Cross-Flow
,”
Handbook of Single-Phase Convective Heat Transfer
,
S.
Kakac
,
R. K.
Shah
, and
W.
Aung
, eds.,
Wiley
,
New York
.
29.
Kopanidis
,
A.
,
Theodorakakos
,
A.
,
Gavaises
,
E.
, and
Bouris
,
D.
,
2010
, “
3D Numerical Simulation of Flow and Conjugate Heat Transfer Through Pore Scale Model of High Porosity Open Cell Metal Foam
,”
Int. J. Heat Mass Transfer
,
53
(
11–12
), pp.
2539
2550
.
30.
Manglik
,
R. M.
,
2003
, “
Heat Transfer Enhancement
,”
Heat Transfer Handbook
, Wiley, Hoboken, NJ, pp.
1029
1130
.
You do not currently have access to this content.