Heat transfer properties of two expanded polystyrene (EPS) samples of similar density, one without (white) and one with graphite opacifier particles (gray), are compared. Tomographic scans are used to obtain cell sizes of the foams. Using established models for closed-cell polymer foams, the extinction coefficient and the effective thermal conductivity are obtained. The effect of opacifiers is modeled using (1) an effective refractive index for the polystyrene walls within a cell model for the EPS and (2) a superposition of extinction due to a particle cloud upon extinction predicted by the cell model, where particles are modeled as oblate spheroids, or equivalent volume, surface, or hydraulic diameter spheres. Modeled effective conductivities are compared with measurements done on a guarded hot-plate apparatus at sample mean temperatures in the range from 0 °C to 40 °C. Typically, cells of the gray EPS are about 40% larger than those of the white EPS and the cell walls in the gray EPS are thicker. The refractive index mixing model and the model with graphite opacifier particles as oblate spheroids overpredict extinction, however, the mean error in the effective conductivity predicted by the oblate spheroids model is only 2.7%. Equivalent volume/surface sphere models underpredict extinction, but still yield a low mean error in effective conductivity of around 4%. While the oblate spheroids model has a lower mean error, the computationally less expensive equivalent volume or equivalent surface models can also be recommended to model the inclusions.

References

References
1.
Raps
,
D.
,
Hossieny
,
N.
,
Park
,
C. B.
, and
Altstädt
,
V.
,
2015
, “
Past and Present Developments in Polymer Bead Foams and Bead Foaming Technology
,”
Polymer
,
56
, pp.
5
19
.
2.
Vo
,
C. V.
, and
Paquet
,
A. N.
,
2004
, “
An Evaluation of the Thermal Conductivity of Extruded Polystyrene Foam Blown With HFC-134a or HCFC-142b
,”
J. Cellular Plast.
,
40
(
3
), pp.
205
228
.
3.
Papadopoulos
,
A.
,
2005
, “
State of the Art in Thermal Insulation Materials and Aims for Future Developments
,”
Energy Build.
,
37
(
1
), pp.
77
86
.
4.
Kono
,
J.
,
Goto
,
Y.
,
Ostermeyer
,
Y.
,
Frischknecht
,
R.
, and
Wallbaum
,
H.
,
2016
, “
Factors for Eco-Efficiency Improvement of Thermal Insulation Materials
,”
Key Eng. Mater.
,
678
, pp.
1
13
.
5.
Council
,
E.
,
2010
, “
Directive 2010/31/EU of the European Parliament and of the Council of 19 May, 2010 on the Energy Performance of Buildings
,”
Official J. Eur. Union
,
53
(L153), pp.
13
35
.
6.
Global Market Insights, Inc.
,
2017
, “Polystyrene (PS) & Expanded Polystyrene (EPS) Market Size By Product (Polystyrene, Expanded Polystyrene), By Application (Building & Construction, Electrical & Electronics, Packaging), Industry Analysis Report, Regional Outlook (U.S., Canada, Germany, UK, France, Spain, Italy, China, India, Japan, Australia, Indonesia, Malaysia, Brazil, Mexico, South Africa, GCC), Growth Potential, Price Trends, Competitive Market Share & Forecast, 2017–2024,” Technical Report No.
GMI2063
.https://www.gminsights.com/industry-analysis/polystyrene-ps-and-expanded-polystyrene-eps-market
7.
Jelle
,
B. P.
,
2011
, “
Traditional, State-of-the-Art and Future Thermal Building Insulation Materials and Solutions—Properties, Requirements and Possibilities
,”
Energy Build.
,
43
(
10
), pp.
2549
2563
.
8.
Schuetz
,
M.
, and
Glicksman
,
L.
,
1984
, “
A Basic Study of Heat Transfer Through Foam Insulation
,”
J. Cellular Plast.
,
20
(
2
), pp.
114
121
.
9.
Kuhn
,
J.
,
Ebert
,
H.-P.
,
Arduini-Schuster
,
M.
,
Büttner
,
D.
, and
Fricke
,
J.
,
1992
, “
Thermal Transport in Polystyrene and Polyurethane Foam Insulations
,”
Int. J. Heat Mass Transfer
,
35
(
7
), pp.
1795
1801
.
10.
Almanza
,
O. A.
,
Rodriguez-Perez
,
M. A.
, and
De Saja
,
J. A.
,
2000
, “
Prediction of the Radiation Term in the Thermal Conductivity of Crosslinked Closed Cell Polyolefin Foams
,”
J. Polym. Sci., Part B
,
38
(
7
), pp.
993
1004
.
11.
Coquard
,
R.
, and
Baillis
,
D.
,
2006
, “
Modeling of Heat Transfer in Low-Density EPS Foams
,”
ASME J. Heat Transfer
,
128
(
6
), p.
538
.
12.
Glicksman
,
L.
,
Schuetz
,
M.
, and
Sinofsky
,
M.
,
1987
, “
Radiation Heat Transfer in Foam Insulation
,”
Int. J. Heat Mass Transfer
,
30
(
1
), pp.
187
197
.
13.
Placido
,
E.
,
Arduini-Schuster
,
M.
, and
Kuhn
,
J.
,
2005
, “
Thermal Properties Predictive Model for Insulating Foams
,”
Infrared Phys. Technol.
,
46
(
3
), pp.
219
231
.
14.
Coquard
,
R.
,
Baillis
,
D.
, and
Quenard
,
D.
,
2009
, “
Radiative Properties of Expanded Polystyrene Foams
,”
ASME J. Heat Transfer
,
131
(
1
), p.
012702
.
15.
Coquard
,
R.
,
Baillis
,
D.
, and
Maire
,
E.
,
2010
, “
Numerical Investigation of the Radiative Properties of Polymeric Foams From Tomographic Images
,”
J. Thermophys. Heat Transfer
,
24
(
3
), pp.
647
658
.
16.
Kaemmerlen
,
A.
,
Vo
,
C.
,
Asllanaj
,
F.
,
Jeandel
,
G.
, and
Baillis
,
D.
,
2010
, “
Radiative Properties of Extruded Polystyrene Foams: Predictive Model and Experimental Results
,”
J. Quant. Spectrosc. Radiat. Transfer
,
111
(
6
), pp.
865
877
.
17.
Schellenberg
,
J.
, and
Wallis
,
M.
,
2010
, “
Dependence of Thermal Properties of Expandable Polystyrene Particle Foam on Cell Size and Density
,”
J. Cellular Plast.
,
46
(
3
), pp.
209
222
.
18.
Coquard
,
R.
,
Baillis
,
D.
, and
Randrianalisoa
,
J.
,
2011
, “
Homogeneous Phase and Multi-Phase Approaches for Modeling Radiative Transfer in Foams
,”
Int. J. Therm. Sci.
,
50
(
9
), pp.
1648
1663
.
19.
Glicksman
,
L. R.
, and
Torpey
,
M.
,
1989
, “
Factors Governing Heat Transfer Through Closed Cell Foam Insulation
,”
J. Build. Phys.
,
12
(
4
), pp.
257
269
.
20.
Stovall
,
T. K.
,
2012
, “
Closed Cell Foam Insulation: A Review of Long Term Thermal Performance Research
,” Oak Ridge National Laboratory (ORNL), and Building Technologies Research and Integration Center, Oak Ridge, TN, Report No.
ORNL/TM-2012/583
.https://www.osti.gov/biblio/1093061
21.
McIntire
,
O.
, and
Kennedy
,
R.
,
1948
, “
Styrofoam for Low-Temperature Insulation
,”
Chem. Eng. Prog.
,
44
(
9
), pp.
727
730
.
22.
Pisipati
,
J. S.
,
Ball
,
E. E.
,
Galligan
,
P. L.
, and
Gluck
,
D. G.
,
1996
, “
Carbon Black in Appliance Foam Insulation
,”
J. Cell. Plast.
,
32
(
1
), pp.
62
81
.
23.
Vo
,
C. V.
,
Bunge
,
F.
,
Duffy
,
J.
, and
Hood
,
L.
,
2011
, “
Advances in Thermal Insulation of Extruded Polystyrene Foams
,”
Cell. Polym.
,
30
(
3
), p.
137
.http://www.polymerjournals.com/pdfdownload/1081744.pdf
24.
Arduini-Schuster
,
M.
,
Manara
,
J.
, and
Vo
,
C.
,
2015
, “
Experimental Characterization and Theoretical Modeling of the Infrared-Optical Properties and the Thermal Conductivity of Foams
,”
Int. J. Therm. Sci.
,
98
, pp.
156
164
.
25.
Baillis
,
D. D.
,
Coquard
,
R.
,
Randrianalisoa
,
J.
,
Dombrovsky
,
L. A.
, and
Viskanta
,
R.
,
2013
, “
Thermal Radiation Properties of Highly Porous Cellular Foams
,”
Spec. Top. Rev. Porous Media
,
4
(
2
), pp.
111
136
.
26.
Ahern
,
A.
,
Verbist
,
G.
,
Weaire
,
D.
,
Phelan
,
R.
, and
Fleurent
,
H.
,
2005
, “
The Conductivity of Foams: A Generalisation of the Electrical to the Thermal Case
,”
Colloids Surf. A
,
263
(
1–3
), pp.
275
279
.
27.
Progelhof
,
R. C.
,
Throne
,
J. L.
, and
Ruetsch
,
R. R.
,
1976
, “
Methods for Predicting the Thermal Conductivity of Composite Systems: A Review
,”
Polym. Eng. Sci.
,
16
(
9
), pp.
615
625
.
28.
Modest
,
M. F.
,
2001
,
Radiative Heat Transfer
,
2nd ed.
,
Academic Press
, New York.
29.
Macleod
,
H. A.
,
2001
,
Thin-Film Optical Filters
,
3rd ed.
,
Institute of Physics Publishing
,
Bristol, UK
.
30.
Heller
,
W.
,
1965
, “
Remarks on Refractive Index Mixture Rules
,”
J. Phys. Chem.
,
69
(
4
), pp.
1123
1129
.
31.
Chýlek
,
P.
,
Ramaswamy
,
V.
, and
Srivastava
,
V.
,
1983
, “
Albedo of Soot-Contaminated Snow
,”
J. Geophys. Res.
,
88
(
C15
), p.
10837
.
32.
Fuller
,
K. A.
,
Malm
,
W. C.
, and
Kreidenweis
,
S. M.
,
1999
, “
Effects of Mixing on Extinction by Carbonaceous Particles
,”
J. Geophys. Res.
,
104
(
D13
), pp.
15941
15954
.
33.
Kolokolova
,
L.
, and
Gustafsonm
,
B. Å.
,
2001
, “
Scattering by Inhomogeneous Particles: Microwave Analog Experiments and Comparison to Effective Medium Theories
,”
J. Quant. Spectrosc. Radiat. Transfer
,
70
(
4–6
), pp.
611
625
.
34.
Sihvola
,
A.
,
2000
, “
Mixing Rules With Complex Dielectric Coefficients
,”
Subsurf. Sens. Technol. Appl.
,
1
(
4
), pp.
393
415
.
35.
Mishchenko
,
M. I.
,
Travis
,
L. D.
, and
Mackowski
,
D. W.
,
1996
, “
T-Matrix Computations of Light Scattering by Nonspherical Particles: A Review
,”
J. Quant. Spectrosc. Radiat. Transfer
,
55
(
5
), pp.
535
575
.
36.
Somerville
,
W.
,
Auguié
,
B.
, and
Le Ru
,
E.
,
2016
, “
SMARTIES: User-Friendly Codes for Fast and Accurate Calculations of Light Scattering by Spheroids
,”
J. Quant. Spectrosc. Radiat. Transfer
,
174
, pp.
39
55
.
37.
Brunke
,
O.
,
Neuser
,
E.
, and
Suppes
,
A.
,
2011
, “
High Resolution Industrial CT Systems: Advances and Comparison With Synchrotron-Based CT
,”
International Symposium on Digital Industrial Radiology and Computed Tomography - Tu.3.2
, Berlin, Germany, June 20--21, pp. 1–9.
38.
GE Sensing and Inspection Technologies GmbH
,
2013
, “
Operating Manual: X-ray Inspection System nanotom m
,” GE Sensing and Inspection Technologies GmBH, Wunstorf, Germany.
39.
Measurement and Control GE
,
2015
, “
Phoenix Datos|x CT Software
,” GE Measurement and Control, Wunstorf, Germany.
40.
Stock
,
S. R.
,
2009
,
Microcomputed Tomography: Methodology and Applications
,
CRC Press
,
Boca Raton, FL
.
41.
Petrasch
,
J.
,
Wyss
,
P.
,
Stämpfli
,
R.
, and
Steinfeld
,
A.
,
2008
, “
Tomography-Based Multiscale Analyses of the 3D Geometrical Morphology of Reticulated Porous Ceramics
,”
J. Am. Ceram. Soc.
,
91
(
8
), pp.
2659
2665
.
42.
Gonzalez
,
R. C.
, and
Woods
,
R. E.
,
2002
,
Digital Image Processing
,
2nd ed.
,
Prentice Hall
, Upper Saddle River, NJ.
43.
Torquato
,
S.
,
2002
, “
Random Heterogeneous Materials: Microstructure and Macroscopic Properties
,”
Interdisciplinary Applied Mathematics
, Vol.
16
,
Springer
,
New York
.
44.
Petrasch
,
J.
,
2009
,
Tomography-Based Methods for Reactive Flows in Porous Media
,
VDM Verlag
, Saarbruecken, Germany.
45.
Querry
,
M. R.
,
Eversman
,
W.
, and
Koval
,
L. R.
,
1985
, “
Optical Constants
,” U.S. Army Armament, Munitions and Chemical Command, Aberdeen Proving Ground, MD, Report No. CRDC-CR-85034.
46.
Keyence Deutschland
,
GmBH
,
2017
, “
Digitalmikroskop Modellreihe VHX-6000
,” Neu-Isenburg, Germany.
47.
Haeri
,
M.
, and
Haeri
,
M.
,
2015
, “
ImageJ Plugin for Analysis of Porous Scaffolds Used in Tissue Engineering
,”
J. Open Res. Software
,
3
(1), pp.
1
4
.
48.
Taurus Instruments GmBH
,
2010
, “
Thermal Conductivity Measuring Instrument TCA 300 DT
,” Weimar/Thüringen, Germany.
You do not currently have access to this content.