To simulate heat transfer processes through periodic devices with nonuniform wall temperature distributions, we propose to decompose the regular temperature into two parts: namely the transient part and the equilibrium part. These two parts can be solved independently under their individual wall and inlet/outlet conditions. By calculating the flow field and the two component functions in one periodic module, one can easily generate the distributions of regular temperature in one or multiple modules. The algorithm and implementation are described in details, and the method is discussed thoroughly from mathematical, physical, and numerical aspects. Sample simulations are also presented to demonstrate the capacity and usefulness of this method for future simulations of thermal periodic flows using various numerical schemes.

References

References
1.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2006
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
2.
Soumerai
,
H.
,
1978
,
Practical Thermodynamics Tools for Heat Exchanger Design Engineers
,
Wiley
,
New York
.
3.
Ahmed
,
M. A.
,
Yaseen
,
M. M.
, and
Yusoff
,
M. Z.
,
2017
, “Numerical Study of Convective Heat Transfer From Tube Bank in Cross Flow Using Nanofluid,”
Case Stud. Therm. Eng.
,
10
, pp.
560
569
.
4.
Adhama
,
A. M.
,
Mohd-Ghazali
,
N.
, and
Ahmad
,
R.
,
2013
, “Thermal and Hydrodynamic Analysis of Microchannel Heat Sinks: A Review,”
Renewable Sustainable Energy Rev.
,
21
, pp.
614
622
.
5.
Wang
,
R.
,
Wang
,
W.
,
Wang
,
J.
, and
Zhu
,
Z.
,
2018
, “
Analysis and Optimization of Trapezoidal Grooved Microchannel Heat Sink Using Nanofluids in a Micro Solar Cell
,”
Entropy
,
20
(
1
), p.
9
.
6.
Ahmed
,
M. A.
,
Yusoff
,
M. Z.
,
Ng
,
K. C.
, and
Shuaib
,
N. H.
,
2015
, “Numerical Investigations on the Turbulent Forced Convection of Nanofluids Flow in a Triangular-Corrugated Channel,”
Case Stud. Therm. Eng.
,
6
, pp.
212
225
.
7.
Patankar
,
S. V.
,
Liu
,
C. H.
, and
Sparrow
,
E. M.
,
1977
, “Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area,”
ASME J. Heat Transfer
,
99
(
2
), pp.
180
186
.
8.
Bahaidarah
,
H. M. S.
,
Anand
,
N. K.
, and
Chen
,
H. C.
,
2005
, “
Numerical Study of Heat and Momentum Transfer in Channels with Wavy Walls
,”
Numer. Heat Transfer A
,
47
(
5
), pp.
417
439
.
9.
Stalio
,
E.
,
2002
, “
Direct Numerical Simulation of Heat Transfer Enhancing Surfaces
,” Ph.D. thesis, University of Bologna, Bologna, Italy.
10.
Stalio
,
E.
, and
Piller
,
M.
,
2007
, “Direct Numerical Simulation of Heat Transfer in Converging–Diverging Wavy Channels,”
ASME J. Heat Transfer
,
129
(
7
), pp.
769
777
.
11.
Wang
,
G.
, and
Vanka
,
S. P.
,
1995
, “Convective Heat Transfer in Periodic Wavy Passages,”
Int. J. Heat Mass Transfer
,
38
(
17
), pp.
3219
3230
.
12.
Ramgadia
,
A. G.
, and
Saha
,
A. K.
,
2013
, “Numerical Study of Fully Developed Flow and Heat Transfer in a Wavy Passage,”
Int. J. Therm. Sci.
,
67
, pp.
152
166
.
13.
Wang
,
Z.
,
Shang
,
H.
, and
Zhang
,
J.
,
2017
, “Lattice Boltzmann Simulations of Heat Transfer in Fully Developed Periodic Incompressible Flows,”
Phys. Rev. E
,
95
(
6–1
), p.
063309
.
14.
Angeli
,
D.
,
Stalio
,
E.
,
Corticelli
,
M. A.
, and
Barozzi
,
G. S.
,
2015
, “A Fast Algorithm for Direct Numerical Simulation of Natural Convection Flows in Arbitrarily-Shaped Periodic Domains,”
J. Phys. Conf. Ser.
,
655
, p.
012054
.
15.
Greiner
,
M.
,
Faulkner
,
R. J.
,
Van
,
V. T.
,
Tufo
,
H. M.
, and
Fischer
,
P. F.
,
2000
, “Simulations of Three-Dimensional Flow and Augmented Heat Transfer in a Symmetrically Grooved Channel,”
ASME J. Heat Transfer
,
122
(
4
), pp.
653
660
.
16.
Adachi
,
T.
, and
Uehara
,
H.
,
2001
, “Correlation Between Heat Transfer and Pressure Drop in Channels With Periodically Grooved Parts,”
Int. J. Heat Mass Transfer
,
44
(
22
), pp.
4333
4343
.
17.
Zhang
,
J.
,
2011
, “Lattice Boltzmann Method for Microfluidics: Models and Applications,”
Microfluid. Nanofluid.
,
10
(
1
), pp.
1
28
.
18.
Chen
,
Q.
,
Zhang
,
X.
, and
Zhang
,
J.
,
2013
, “Improved Treatments for General Boundary Conditions in the Lattice Boltzmann Method for Convection-Diffusion and Heat Transfer Processes,”
Phys. Rev. E
,
88
(
3
), p.
033304
.
19.
Niceno
,
B.
, and
Nobile
,
E.
,
2001
, “Numerical Analysis of Fluid Flow and Heat Transfer in Periodic Wavy Channels,”
Int. J. Heat Fluid Flow
,
22
(
2
), pp.
156
157
.
20.
Chen
,
Q.
,
Zhang
,
X.
, and
Zhang
,
J.
,
2015
, “Effects of Reynolds and Prandtl Numbers on Heat Transfer Around a Circular Cylinder by the Simplified Thermal Lattice Boltzmann Model,”
Commun. Comput. Phys.
,
17
(
4
), pp.
937
959
.
21.
Cao
,
Y.
, and
Zhang
,
Y.
,
2017
, “Investigation on the Natural Convection in Horizontal Concentric Annulus Using the Variable Property-Based Lattice Boltzmann Flux Solver,”
Int. J. Heat Mass Transfer
,
111
, pp.
1260
1271
.
22.
Saha
,
A. K.
, and
Acharya
,
S.
,
2005
, “Unsteady RANS Simulation of Turbulent Flow and Heat Transfer in Ribbed Coolant Passages of Different Aspect Ratios,”
Int. J. Heat Mass Transfer
,
48
(
23–24
), pp.
4704
4725
.
23.
He
,
X.
,
Chen
,
S.
, and
Doolen
,
G. D.
,
1998
, “A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit,”
J. Comput. Phys.
,
146
(
1
), pp.
282
300
.
24.
Succi
,
S.
,
2001
,
The Lattice Boltzmann Equation
,
Oxford University Press
,
Oxford, UK
.
25.
Guo
,
Z.
, and
Shu
,
C.
,
2013
,
Lattice Boltzmann Method and Its Applications in Engineering
,
World Scientific Publishing
,
Singapore
.
26.
Li
,
Q.
,
Luo
,
K.
,
Kang
,
Q.
,
He
,
Y.
,
Chen
,
Q.
, and
Liu
,
Q.
,
2016
, “Lattice Boltzmann Methods for Multiphase Flow and Phase-Change Heat Transfer,”
Prog. Energy Combust. Sci.
,
52
, pp.
62
105
.
27.
Yin
,
X.
, and
Zhang
,
J.
,
2012
, “An Improved Bounce-Back Scheme for Complex Boundary Conditions in Lattice Boltzmann Method,”
J. Comput. Phys.
,
231
(
11
), pp.
4295
4503
.
You do not currently have access to this content.