Wavy fins have been considered as an alternative of the straight fins in compact heat exchangers (CHEs) for better heat transfer performance, which can be augmented by considering vortex generators (VGs). This work is related to numerical investigation and optimization of corrugation height of fin and angle of attack of delta winglet type VGs in a wavy fin-and-tube heat exchanger. For this purpose, three-dimensional (3D) Reynolds-averaged Navier-Stokes analysis and a multi-objective genetic algorithm (MOGA) with surrogate modeling are performed. Numerical simulation is carried out to study the effect of delta winglets with varying the corrugation height of wavy fin in three rows of tubes with staggered tube arrangements. The corrugation height (H) and angle of attack (α) vary from 0.3 mm to 1.8 mm and 15 deg to 75 deg, respectively. Results are illustrated by investigating the flow structures and temperature contours. Results show that increasing the corrugation height of wavy fin and angle of attack of delta winglets enhances the heat transfer performance of heat exchanger while friction factor is also increased. Employing delta winglets has augmented the thermal performance for all corrugation heights and superior effect is observed at a higher corrugation. To achieve a maximum heat transfer enhancement and a minimum pressure drop, the optimal values of these parameters (H and α) are calculated using the Pareto optimal strategy. For this purpose, computational fluid dynamics (CFD) data, a surrogate model (neural network), and a multi-objective GA are combined. Results show that optimal orientation of delta winglets with respect to corrugation height can improve both the thermal and hydraulic performance of the heat exchanger.

References

References
1.
Wang
,
Q.
,
Zeng
,
M.
,
Ma
,
T.
,
Du
,
X.
, and
Yang
,
J.
,
2014
, “
Recent Development and Application of Several High-Efficiency Surface Heat Exchangers for Energy Conversion and Utilization
,”
Appl. Energy
,
135
, pp.
748
777
.
2.
Kang
,
H. J.
,
Li
,
W.
,
Li
,
H. Z.
,
Xin
,
R. C.
, and
Tao
,
W. Q.
,
1994
, “
Experimental Study on Heat Transfer and Pressure Drop Characteristics of Four Types of Plate Fin-and-Tube Heat Exchanger Surfaces
,”
J. Therm. Sci.
,
1
, pp.
34
42
.
3.
Kang
,
H. J.
, and
Kim
,
M. H.
,
1999
, “
Effect of Strip Location on the Air-Side Pressure Drop and Heat Transfer in Strip Fin-and-Tube Heat Exchanger
,”
Int. J. Refrig.
,
22
(
4
), pp.
302
312
.
4.
Tang
,
L. H.
,
Zeng
,
M.
, and
Wang
,
Q. W.
,
2009
, “
Experimental and Numerical Investigation on Air-Side Performance of Fin-and-Tube Heat Exchangers With Various Fin Patterns
,”
Exp. Therm. Fluid Sci.
,
33
(
5
), pp.
818
827
.
5.
Wen
,
M. Y.
, and
Ho
,
C. Y.
,
2009
, “
Heat-Transfer Enhancement in Fin-and-Tube Heat Exchanger With Improved Fin Design
,”
Appl. Therm. Eng.
,
29
(
5–6
), pp.
1050
1057
.
6.
Beecher
,
D. T.
, and
Fagan
,
T. J.
, 1987, “
Effects of Fin Pattern on the Air Side Heat Transfer Coefficient in Plate Finned Tube Heat Exchangers
,”
Conference: American Society of Heating, Refrigerating and Air-Conditioning Engineers Meeting
, Nashville, TN, Jun. 28, p.
29
.
7.
Wang
,
C. C.
,
Fu
,
W. L.
, and
Chang
,
C. T.
,
1997
, “
Heat Transfer and Friction Characteristics of Typical Wavy Fin-and-Tube Heat Exchangers
,”
Exp. Therm. Fluid Sci.
,
14
(
2
), pp.
174
186
.
8.
Wang
,
C. C.
,
Tsai
,
Y. M.
, and
Lu
,
D. C.
,
1998
, “
Comprehensive Study of Convex-Louver and Wavy Fin-and-Tube Heat Exchangers
,”
J. Thermophys. Heat Transfer
,
12
(
3
), pp.
423
430
.
9.
Wang
,
C. C.
,
1999
, “
Investigation of Wavy Fin-and-Tube Heat Exchangers: A Contribution to Databank
,”
Exp. Heat Transfer
,
12
(
1
), pp.
73
89
.
10.
Glazar
,
V.
,
Trp
,
A.
, and
Lenic
,
K.
,
2012
, “
Numerical Study of Heat Transfer and Analysis of Optimal Fin Pitch in a Wavy Fin-and-Tube Heat Exchanger
,”
Heat Transfer Eng.
,
33
(
2
), pp.
88
96
.
11.
Wongwises
,
S.
, and
Chokeman
,
Y.
,
2005
, “
Effect of Fin Pitch and Number of Tube Rows on the Air Side Performance of Herringbone Wavy Fin and Tube Heat Exchangers
,”
Energy Convers. Manage.
,
46
(
13–14
), pp.
2216
2231
.
12.
Dong
,
J.
,
Chen
,
J.
,
Zhang
,
W.
, and
Hu
,
J.
,
2010
, “
Experimental and Numerical Investigation of Thermal -Hydraulic Performance in Wavy Fin-and-Flat Tube Heat Exchangers
,”
Appl. Therm. Eng.
,
30
(
11–12
), pp.
1377
1386
.
13.
Tao
,
Y. B.
,
He
,
Y. L.
,
Huang
,
J.
,
Wu
,
Z. G.
, and
Tao
,
W. Q.
,
2007
, “
Numerical Study of Local Heat Transfer Coefficient and Fin Efficiency of Wavy Fin-and-Tube Heat Exchangers
,”
Int. J. Therm. Sci.
,
46
(
8
), pp.
768
778
.
14.
Biswas
,
G.
,
Deb
,
P.
, and
Biswas
,
S.
,
1994
, “
Generation of Longitudinal Streamwise Vortices—a Device for Improving Heat Exchanger Design
,”
ASME J. Heat Transfer
,
116
(
3
), pp.
588
597
.
15.
Biswas
,
G.
,
Chattopadhyay
,
H.
, and
Sinha
,
A.
,
2012
, “
Augmentation of Heat Transfer by Creation of Streamwise Longitudinal Vortices Using Vortex Generators
,”
Heat Transfer Eng.
,
33
(
4–5
), pp.
406
424
.
16.
Deb
,
P.
,
Biswas
,
G.
, and
Mitra
,
N. K.
,
1995
, “
Heat Transfer and Flow Structure in Laminar and Turbulent Flows in a Rectangular Channel With Longitudinal Vortices
,”
Int. J. Heat Mass Transfer
,
38
(
13
), pp.
2427
2444
.
17.
Biswas
,
G.
,
Torii
,
K.
,
Fujii
,
D.
, and
Nishino
,
K.
,
1996
, “
Numerical and Experimental Determination of Flow Structure and Heat Transfer Effects of Longitudinal Vortices in a Channel Flow
,”
Int. J. Heat Mass Transfer
,
39
(
16
), pp.
3441
3451
.
18.
Guo
,
Z. Y.
,
Li
,
D. Y.
, and
Wang
,
B. X.
,
1998
, “
A Novel Concept for Convective Heat Transfer Enhancement
,”
Int. J. Heat Mass Transfer
,
41
(
14
), pp.
2221
2225
.
19.
Tao
,
W.-Q.
,
Guo
,
Z.-Y.
, and
Wang
,
B.-X.
,
2002
, “
Field Synergy Principle for Enhancing Convective Heat Transfer––Its Extension and Numerical Verifications
,”
Int. J. Heat Mass Transfer
,
45
(
18
), pp.
3849
3856
.
20.
Tian
,
L.
,
He
,
Y.
,
Tao
,
Y.
, and
Tao
,
W.
,
2009
, “
A Comparative Study on the Air-Side Performance of Wavy Fin-and-Tube Heat Exchanger With Punched Delta Winglets in Staggered and in-Line Arrangements
,”
Int. J. Therm. Sci.
,
48
(
9
), pp.
1765
1776
.
21.
Lotfi
,
B.
,
Zeng
,
M.
,
Sundén
,
B.
, and
Wang
,
Q.
,
2014
, “
3D Numerical Investigation of Flow and Heat Transfer Characteristics in Smooth Wavy Fin-and-Elliptical Tube Heat Exchangers Using New Type Vortex Generators
,”
Energy
,
73
, pp.
233
257
.
22.
Lotfi
,
B.
,
Sundén
,
B.
, and
Wang
,
Q.
,
2016
, “
An Investigation of the Thermo-Hydraulic Performance of the Smooth Wavy Fin-and-Elliptical Tube Heat Exchangers Utilizing New Type Vortex Generators
,”
Appl. Energy
,
162
, pp.
1282
1302
.
23.
Zeng
,
M.
,
Tang
,
L. H.
,
Lin
,
M.
, and
Wang
,
Q. W.
,
2010
, “
Optimization of Heat Exchangers With Vortex-Generator Fin by Taguchi Method
,”
Appl. Therm. Eng.
,
30
(
13
), pp.
1775
1783
.
24.
Tang
,
L. H.
,
Tan
,
S. C.
,
Gao
,
P. Z.
, and
Zeng
,
M.
,
2016
, “
Parameters Optimization of Fin-and-Tube Heat Exchanger With a Novel Vortex Generator Fin by Taguchi Method
,”
Heat Transfer Eng.
,
37
(
3–4
), pp.
369
381
.
25.
Wang
,
H.
,
Liu
,
Y.
,
Yang
,
P.
,
Wu
,
R.
, and
He
,
Y.
,
2016
, “
Parametric Study and Optimization of H-Type Finned Tube Heat Exchangers Using Taguchi Method
,”
Appl. Therm. Eng.
,
103
, pp.
128
138
.
26.
Jang
,
J. Y.
,
Hsu
,
L. F.
, and
Leu
,
J. S.
,
2013
, “
Optimization of the Span Angle and Location of Vortex Generators in a Plate-Fin and Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
67
, pp.
432
444
.
27.
Sun
,
L.
, and
Zhang
,
C. L.
,
2014
, “
Evaluation of Elliptical Finned-Tube Heat Exchanger Performance Using CFD and Response Surface Methodology
,”
Int. J. Therm. Sci.
,
75
, pp.
45
53
.
28.
Salviano
,
L. O.
,
Dezan
,
D. J.
, and
Yanagihara
,
J. I.
,
2016
, “
Thermal-Hydraulic Performance Optimization of Inline and Staggered Fin-Tube Compact Heat Exchangers Applying Longitudinal Vortex Generators
,”
Appl. Therm. Eng.
,
95
, pp.
311
329
.
29.
Lemouedda
,
A.
,
Breuer
,
M.
,
Franz
,
E.
,
Botsch
,
T.
, and
Delgado
,
A.
,
2010
, “
Optimization of the Angle of Attack of Delta-Winglet Vortex Generators in a Plate-Fin-and-Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
53
(
23 − 24
), pp.
5386
5399
.
30.
Salviano
,
L. O.
,
Dezan
,
D. J.
, and
Yanagihara
,
J. I.
,
2015
, “
Optimization of Winglet-Type Vortex Generator Positions and Angles in Plate-Fin Compact Heat Exchanger: Response Surface Methodology and Direct Optimization
,”
Int. J. Heat Mass Transfer
,
82
, pp.
373
387
.
31.
Wu
,
X.
,
Liu
,
D.
,
Zhao
,
M.
,
Lu
,
Y.
, and
Song
,
X.
,
2016
, “
The Optimization of Fin-Tube Heat Exchanger With Longitudinal Vortex Generators Using Response Surface Approximation and Genetic Algorithm
,”
Heat Mass Transfer
,
52
(
9
), pp.
1871
1879
.
32.
Damavandi
,
M. D.
,
Forouzanmehr
,
M.
, and
Safikhani
,
H.
,
2017
, “
Modeling and Pareto Based Multi-Objective Optimization of Wavy Fin-and-Elliptical Tube Heat Exchangers Using CFD and NSGA-II Algorithm
,”
Appl. Therm. Eng.
,
111
(
Suppl. C
), pp.
325
339
.
33.
He
,
Y. L.
, and
Zhang
,
Y.
,
2012
, “
Advances and Outlooks of Heat Transfer Enhancement by Longitudinal Vortex Generators
,”
Adv. Heat Transfer
,
44
, pp.
119
185
.
34.
Panse
,
S. P.
,
2005
, “
A Numerical Investigation of Thermal-Hydraulic Characteristics in Three Dimensional Plate and Wavy Fin-Tube Heat Exchangers for Laminar and Transitional Flow Regimes
,”
Master's thesis
, Montana State University-Bozeman, Bozeman, MT.https://scholarworks.montana.edu/xmlui/handle/1/2008
35.
Wei
,
X.
, and
Jing
,
C. M.
,
2004
, “
Numerical Predictions of Fluid Flow and Heat Transfer in Corrugated Channels Using Time-Dependent and Time-Independent Flow Models
,”
J. Enhanced Heat Transfer
,
11
(4), pp.
347
358
.
36.
He
,
Y. L.
,
Tao
,
W. Q.
,
Song
,
F. Q.
, and
Zhang
,
W.
,
2005
, “
Three-Dimensional Numerical Study of Heat Transfer Characteristics of Plain Plate Fin-and-Tube Heat Exchangers From View Point of Field Synergy Principle
,”
Int. J. Heat Fluid Flow
,
26
(
3
), pp.
459
473
.
37.
ANSYS
,
2018
, “
FLUENT 14.5 Theory Guide
,” ANSYS Inc., Canonsburg, PA, accessed June 27, 2018, http://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node359.htm.
38.
Díaz
,
G.
,
Sen
,
M.
,
Yang
,
K. T.
, and
McClain
,
R. L.
,
1999
, “
Simulation of Heat Exchanger Performance by Artificial Neural Networks
,”
HVACR Res.
,
5
(
3
), pp.
195
208
.
39.
Dı́az
,
G.
,
Sen
,
M.
,
Yang
,
K. T.
, and
McClain
,
R. L.
,
2001
, “
Dynamic Prediction and Control of Heat Exchangers Using Artificial Neural Networks
,”
Int. J. Heat Mass Transfer
,
44
(
9
), pp.
1671
1679
.
40.
Xie
,
G.
,
Sunden
,
B.
,
Wang
,
Q.
, and
Tang
,
L.
,
2009
, “
Performance Predictions of Laminar and Turbulent Heat Transfer and Fluid Flow of Heat Exchangers Having Large Tube-Diameter and Large Tube-Row by Artificial Neural Networks
,”
Int. J. Heat Mass Transfer
,
52
(
11–12
), pp.
2484
2497
.
41.
Peng
,
H.
, and
Ling
,
X.
,
2009
, “
Neural Networks Analysis of Thermal Characteristics on Plate-Fin Heat Exchangers With Limited Experimental Data
,”
Appl. Therm. Eng.
,
29
(
11–12
), pp.
2251
2256
.
42.
Haykin
,
S.
,
1999
,
Neural Networks A Comprehensive Foundation
, 2nd ed.,
Prentice Hall
, Upper Saddle River, NJ.
43.
Eeckman
,
F.
,
2012
,
Analysis and Modeling of Neural Systems
,
Springer Science & Business Media
, New York.
44.
MathWorks Inc.,
2005
,
‘MATLAB’ The Language of Technical Computing Desktop Tools and Development Environment, Version 7
, Vol. 9,
MathWorks Inc.
, Natick, MA.
45.
Forrester
,
A.
, and
Keane
,
A.
,
2008
,
Engineering Design Via Surrogate Modelling: A Practical Guide
,
Wiley
, Hoboken, NJ.
46.
Khan
,
T. A.
, and
Li
,
W.
,
2017
, “
Optimal Design of Plate-Fin Heat Exchanger by Combining Multi-Objective Algorithms
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1560
1572
.
47.
Deb
,
K.
,
Agrawal
,
S.
,
Pratap
,
A.
, and
Meyarivan
,
T.
,
2000
, “
A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II
,”
International Conference on Parallel Problem Solving From Nature
, Springer, Berlin, pp.
849
858
You do not currently have access to this content.