This paper presents a numerical and experimental study of a turbulent flow of air in a T-bifurcation. This configuration corresponds to a stator containing radial vents oriented vertically to the rotor–stator air gap in electrical machines. Our analysis focuses on the local convective heat transfer over the internal surface of the vents under a turbulent mass flow rate. To model the cooling installation in this region, computational fluid dynamics simulations and an experiment using particle image velocimetry (PIV) are performed. The resulting flow generally produces recirculation zones in various channels. The effect of the flow ratio and diameter of the bifurcation on the dynamic and thermal behavior of the flow is also examined. In this study, we apply a numerical approach based on the kω shear stress transport (SST) turbulence model (using the commercial software, “comsolmultiphysics”) to numerically solve the Navier–Stokes equations and energy equation of the system under consideration. We describe the different hypotheses necessary to formulate the equations governing the problem, initial conditions, and boundary condition. The velocity in the bifurcation calculated using the simulation is compared with that obtained by the experiment and it reveals a good agreement. The effect of the branch diameter of the bifurcation and flow ratio on the heat transfer is specifically analyzed in this research work.

References

References
1.
González-Lopez
,
D. A.
,
Tapia
,
J. A.
,
Wallace
,
R.
, and
Valenzuela
,
A.
,
2008
, “
Design and Test of an Axial Flux Permanent-Magnet Machine With Field Control Capability
,”
IEEE Trans. Magn.
,
44
(
9
), pp.
2168
2173
.
2.
Seghir-Oualil
,
S.
,
Harmand
,
S.
,
Laloy
,
D.
, and
Phillipart
,
O.
,
2009
, “
Study of the Thermal Behavior of a Synchronous Motor With Permanent Magnets
,”
Int. J. Eng.
,
3
(3), pp. 229–256.http://www.cscjournals.org/library/manuscriptinfo.php?mc=IJE-36
3.
Hayes
,
R. E.
,
Nandakumar
,
K.
, and
Nasr-El-Din
,
H.
,
1989
, “
Steady Laminar Flow in a 90 Degree Planar Branch
,”
Comput. Fluids
,
17
(
4
), pp.
537
553
.
4.
Neary
,
V. S.
, and
Sotiropoulos
,
F.
,
1996
, “
Numerical Investigation of Laminar Flows Through 90-Degree Diversions of Rectangular Cross-Section
,”
Comput. Fluids
,
999
(
2
), pp.
95
118
.
5.
Nikuradse
,
J.
,
1930
, “
Untersuchungen Über Turbulente Strömungen in Nicht Kreisförmigen Rohren
,”
Ing. Arch.
,
1
(
3
), pp.
306
332
.
6.
Hoagland
,
L. C.
,
1962
, “
Fully Developed Turbulent Flow in Straight Rectangular Ducts: Secondary Flow, Its Cause and Effect on the Primary Flow
,”
Sc.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/44470
7.
Demuren
,
A. O.
, and
Rodi
,
W.
,
1984
, “
Calculation of Turbulence-Driven Secondary Motion in Non-Circular Ducts
,”
J. Fluid Mech.
,
140
(
1
), pp.
189
222
.
8.
Demuren
,
A. O.
, and
Rodi
,
W.
,
1987
, “
Three-Dimensional Calculation of Turbulent Duct Flow With Non-Uniform Inlet Conditions
,”
Comput. Fluids
,
15
(
1
), pp.
47
57
.
9.
Shipkowitz
,
T.
,
Rodgers
,
V. G. J.
,
Frazin
,
L. J.
, and
Chandran
,
K. B.
,
2000
, “
Numerical Study on the Effect of Secondary Flow in the Human Aorta on Local Shear Stresses in Abdominal Aortic Branches
,”
J. Biomech.
,
33
(
6
), pp.
717
728
.
10.
Moshkin
,
N. P.
, and
Yambangwai
,
D.
,
2012
, “
Numerical Simulation of Pressure-Driven Startup Laminar Flows Through a Planar T-Junction Channel
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
3
), pp.
1241
1250
.
11.
Louda
,
P.
,
Kozel
,
K.
,
Příhoda
,
J.
,
Beneš
,
L.
, and
Kopáček
,
T.
,
2011
, “
Numerical Solution of Incompressible Flow Through Branched Channels
,”
Comput. Fluids
,
46
(
1
), pp.
318
324
.
12.
Beneš
,
L.
,
Louda
,
P.
,
Kozel
,
K.
,
Keslerová
,
R.
, and
Štigler
,
J.
,
2013
, “
Numerical Simulations of Flow Through Channels With T-Junction
,”
Appl. Math. Comput.
,
219
(
13
), pp.
7225
7235
.
13.
Ramamurthy
,
A. S.
, and
Zhu
,
W.
,
1997
, “
Combining Flows in 90 Junctions of Rectangular Closed Conduits
,”
J. Hydraul. Eng.
,
123
(
11
), pp.
1012
1019
.
14.
Ramamurthy
,
A. S.
,
Qu
,
J.
,
Vo
,
D.
, and
Zhai
,
C.
,
2006
, “
3-D Simulation of Dividing Flows in 90 deg Rectangular Closed Conduits
,”
ASME J. Fluids Eng.
,
128
(
5
), pp.
1126
1129
.
15.
El-Shaboury
,
A. M. F.
,
Soliman
,
H. M.
, and
Ormiston
,
S. J.
,
2003
, “
Performance Evaluation of Branching and Impacting Tee Junctions for Laminar Forced-Convection Applications
,”
Int. J. Therm. Sci.
,
42
(
7
), pp.
713
723
.
16.
Julien
,
P.
,
Olmo
,
D. M.
,
Duy
,
N. T.
, and
Souad
,
H.
,
2014
, “
Heat Transfer in a 90 T-Junction
,”
International Heat Transfer Conference
(IHTC-15), Kyoto, Japan, Aug. 10–15.
17.
Lakehal
,
A.
,
Nait Bouda
,
N.
, and
Harmand
,
S.
,
2013
, “
Étude Numérique D'un Écoulement Turbulent Dans Une Jonction En T Avec Transfert De Chaleur
,” AFM, Maison de la Mécanique, Courbevoie, France.
18.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
19.
Ramamurthy
,
A. S.
,
Carballada
,
L. B.
, and
Tran
,
D. M.
,
1988
, “
Combining Open Channel Flow at Right Angled Junctions
,”
J. Hydraul. Eng.
,
114
(
12
), pp.
1449
1460
.
20.
Haider
,
S.
,
Paquier
,
A.
,
Morel
,
R.
, and
Champagne
,
J. Y.
,
2003
, “
Urban Flood Modelling Using Computational Fluid Dynamics
,”
Proc. Inst. Civil Eng. Water Maritime Eng.
,
156
(
2
), pp.
129
135
.
21.
Lakehal
,
A.
,
Nait Bouda
,
N.
, and
Harmand
,
S.
,
2017
, “
Numerical Study of Convective Heat Transfer in T‐Bifurcating Channel
,”
Heat Transfer: Asian Res.
,
46
(
8
), pp.
1262
1280
.
22.
Liepsch
,
D.
,
Moravec
,
S.
,
Rastogi
,
A. K.
, and
Vlachos
,
N. S.
,
1982
, “
Measurement and Calculations of Laminar Flow in a Ninety Degree Bifurcation
,”
J. Biomech.
,
15
(
7
), pp.
473
485
.
23.
Bouda
,
N. N.
,
Babbou
,
A.
, and
Harmand
,
S.
,
2014
, “
Reverse Flow Region Associated to a Heat Transfer in a Turbulent Wall Jet
,”
Int. J. Therm. Sci.
,
85
, pp.
151
158
.
24.
Yang
,
Y.-T.
, and
Tsai
,
T.-Y.
,
1998
, “
Numerical Calculation of Turbulent Flow in a Planar Bifurcation With a Protruding Branching Duct
,”
Numer. Heat Transfer Part Appl.
,
34
(
1
), pp.
61
74
.
25.
Tikhonov, A, N.
, 1963,
On the Stability of Inverse Problems
, 3rd ed., Doklady Akademii Nauk, Bethesda, MD, pp. 195–198.
26.
Tikhonov
,
A. N.
,
1943
, “
On the Stability of Inverse Problems
,”
Dokl. Akad. Nauk SSSR
, pp.
195
198
.
27.
Raffel
,
M.
,
Willert
,
C. E.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2013
,
Particle Image Velocimetry: A Practical Guide
,
Springer, Berlin
.
28.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1995
, “
Engineering Application of Experimental Uncertainty Analysis
,”
AIAA J.
,
33
(
10
), pp.
1888
1896
.
29.
Nguyen
,
T. D.
, and
Harmand
,
S.
,
2013
, “
Heat Transfer and Vortical Structures Around a Rotating Cylinder With a Spanwise Disk and Low-Velocity Crossflow
,”
Int. J. Heat Mass Transfer
,
64
, pp.
1014
1030
.
30.
Nguyen
,
T. D.
,
Pellé
,
J.
,
Harmand
,
S.
, and
Poncet
,
S.
,
2012
, “
PIV Measurements of an Air Jet Impinging on an Open Rotor-Stator System
,”
Exp. Fluids
,
53
(
2
), pp.
401
412
.
31.
Wilcox
,
D. C.
,
1993
,
Turbulence Modeling for CFD
,
DCW Industries
,
La Canada, CA
.
32.
Ameri
,
A. A.
,
Rigby
,
D. L.
, and
Steinthorsson
,
E.
,
2002
, “
Computation of Turbulent Heat Transfer on the Walls of a 180 Degree Turn Channel With a Low Reynolds Number Reynolds Stress Model
,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA/CR-2002-211515
.https://www.researchgate.net/profile/Erlendur_Steinthorsson/publication/24304307_Computation_of_Turbulent_Heat_Transfer_on_the_Walls_of_a_180_Degree_Turn_Channel_With_a_Low_Reynolds_Number_Reynolds_Stress_Model/links/564de80d08ae1ef9296b6811/Computation-of-Turbulent-Heat-Transfer-on-the-Walls-of-a-180-Degree-Turn-Channel-With-a-Low-Reynolds-Number-Reynolds-Stress-Model.pdf
You do not currently have access to this content.