The steady-periodic natural convection phenomenon inside a heated enclosure filled with disconnected, discrete solid blocks, and under horizontal, time-periodic heating is investigated numerically. This configuration is akin to several practical engineering applications, such as oven baking in food processing, heat treating of metal parts in materials processing, and storage and transportation of discrete solid goods in containerization. Because of the relative large size, and limited number of solid bodies placed inside the enclosure, the solid and fluid constituents are viewed separately and the process modeled using continuum balance equations for each with suitable compatibility conditions imposed at their interfaces. The periodic heating is driven by a sinusoidal in time hot-wall temperature, while maintaining the cold wall temperature constant, with top and bottom surfaces adiabatic. Results are presented in terms of hot and cold wall-averaged Nusselt numbers, time-varying energy capacity of the enclosure, and periodic isotherms and streamlines, for Ra varying from 103 to 107, Pr equal to 1, and 36 uniformly distributed, conducting and disconnected solid square blocks. The results explain why and how the effect of varying Ra on the convection process is significantly affected by the presence of the solid blocks. An analytical equation, valid for time-periodic heating, is proposed for anticipating the block interference effect with great accuracy, substantiating the distinct features of Nusselt versus Rayleigh observed when the blocks are present inside the enclosure.

References

References
1.
Merrikh
,
A. A.
, and
Lage
,
J. L.
,
2005
, “
From Continuum to Porous-Continuum: The Visual Resolution Impact on Modeling Natural Convection in Heterogeneous Media
,” Transport Phenomena in Porous Media, Vol. 3, D. B. Ingham and I. Pop, eds., Elsevier, Oxford, UK, pp. 60–96.
2.
Merrikh
,
A. A.
,
Lage
,
J. L.
, and
Mohamad
,
A. A.
,
2005
, “
Natural Convection in Nonhomogeneous Heat-Generating Media: Comparison of Continuum and Porous-Continuum Models
,”
J. Porous Media
,
8
(
2
), pp.
1
15
.
3.
Whitaker
,
S.
,
1999
,
Theory and Applications of Transport in Porous Media: The Method of Volume Averaging
,
Kluwer Academic Publishers
,
Norwell, MA
.
4.
Nield
,
D. A.
, and
Bejan
,
A.
,
2017
,
Convection in Porous Media
,
5th ed.
,
Springer
,
New York
.
5.
House
,
J. M.
,
Beckermann
,
C.
, and
Smith
,
T. F.
,
1990
, “
Effect of a Centered Conducting Body on Natural Convection Heat Transfer in an Enclosure
,”
Numer. Heat Transfer, Part A
,
18
(
2
), pp.
213
225
.
6.
Oh
,
J. Y.
,
Ha
,
M. Y.
, and
Kim
,
K. C.
,
1997
, “
Numerical Study of Heat Transfer and Flow of Natural Convection in an Enclosure With a Heat-Generating Conducting Body
,”
Numer. Heat Transfer, Part A
,
31
(
3
), pp.
289
303
.
7.
Lee
,
J. R.
, and
Ha
,
M. Y.
,
2005
, “
A Numerical Study of Natural Convection in a Horizontal Enclosure With a Conducting Body
,”
Int. J. Heat Mass Transfer
,
48
(
16
), pp.
3308
3318
.
8.
Lee
,
J. R.
, and
Ha
,
M. Y.
,
2006
, “
Numerical Simulation of Natural Convection in a Horizontal Enclosure With a Heat-Generating Conducting Body
,”
Int. J. Heat Mass Transfer
,
49
(
15–16
), pp.
2684
2702
.
9.
Bhave
,
P.
,
Narasimhan
,
A.
, and
Rees
,
D. A. S.
,
2006
, “
Natural Convection Heat Transfer Enhancement Using Adiabatic Block: Optimal Block Size and Prandtl Number Effect
,”
Int. J. Heat Mass Transfer
,
49
(
21–22
), pp.
3807
3818
.
10.
Kumar De
,
A.
, and
Dalal
,
A.
,
2006
, “
A Numerical Study of Natural Convection Around a Square, Horizontal, Heated Cylinder Placed in an Enclosure
,”
Int. J. Heat Mass Transfer
,
49
(
23–24
), pp.
4608
4623
.
11.
Merrikh
,
A. A.
, and
Mohamad
,
A. A.
,
2001
, “
Blockage Effects in Natural Convection in Differentially Heated Enclosures
,”
J. Enhanced Heat Transfer
,
8
(
1
), pp.
55
74
.
12.
Merrikh
,
A. A.
, and
Lage
,
J. L.
,
2005
, “
Natural Convection in an Enclosure With Disconnected and Conducting Solid Blocks
,”
Int. J. Heat Mass Transfer
,
48
(
7
), pp.
1361
1372
.
13.
Massarotti
,
N.
,
Nithiarasu
,
P.
, and
Carotenuto
,
A.
,
2003
, “
Microscopic and Macroscopic Approach for Natural Convection in Enclosures Filled With Fluid Saturated Porous Medium
,”
Int. J. Numer. Methods Heat Fluid Flow
,
13
(
7
), pp.
862
886
.
14.
Braga
,
E. J.
, and
De Lemos
,
M. J. S.
,
2005
, “
Heat Transfer in Enclosures Having a Fixed Amount of Solid Material Simulated With Heterogeneous and Homogeneous Models
,”
Int. J. Heat Mass Transfer
,
48
(
23–24
), pp.
4748
4765
.
15.
Braga
,
E. J.
, and
De Lemos
,
M. J. S.
,
2005
, “
Laminar Natural Convection in Cavities Filled With Circular and Square Rods
,”
Int. Commun. Heat Mass Transfer
,
32
(
10
), pp.
1289
1297
.
16.
Pourshaghaghy
,
A.
,
Hakkaki-Fard
,
A.
, and
Mahdavi-Nejad
,
A.
,
2007
, “
Direct Simulation of Natural Convection in Square Porous Enclosure
,”
Energy Convers. Manage.
,
48
(
5
), pp.
1579
1589
.
17.
Jamalud-Din
,
S. D.
,
Rees
,
D. A. S.
,
Reddy
,
B. V. K.
, and
Narasimhan
,
A.
,
2010
, “
Prediction of Natural Convection Flow Using Network Model and Numerical Simulations Inside Enclosure With Distributed Solid Blocks
,”
Heat Mass Transfer
,
46
(
3
), pp.
333
343
.
18.
Narasimhan
,
A.
, and
Reddy
,
B. V. K.
,
2010
, “
Natural Convection Inside a Bidisperse Porous Medium Enclosure
,”
ASME J. Heat Transfer
,
132
(
1
), p.
012502
.
19.
Junqueira
,
S. L. M.
,
De Lai
,
F. C.
,
Franco
,
A. T.
, and
Lage
,
J. L.
,
2013
, “
Numerical Investigation of Natural Convection in Heterogeneous Rectangular Enclosures
,”
Heat Transfer Eng. J.
,
34
(
5–6
), pp.
460
469
.
20.
Qiu
,
H.
,
Lage
,
J. L.
,
Junqueira
,
S. L. M.
, and
Franco
,
A. T.
,
2013
, “
Predicting the Nusselt Number of Heterogeneous (Porous) Enclosures Using a Generic Form of the Berkovsky-Polevikov Correlations
,”
ASME J. Heat Transfer
,
135
(
8
), p.
082601
.
21.
Lage
,
J. L.
, and
Bejan
,
A.
,
1993
, “
The Resonance of Natural Convection in an Enclosure Heated Periodically From the Side
,”
Int. J. Heat Mass Transfer
,
36
(
8
), pp.
2027
2038
.
22.
Antohe
,
B. V.
, and
Lage
,
J. L.
,
1994
, “
A Dynamic Thermal Insulator: Inducing Resonance Within a Fluid Saturated Porous Medium Enclosure Heated Periodically From the Side
,”
Int. J. Heat Mass Transfer
,
37
(
5
), pp.
771
782
.
23.
Antohe
,
B. V.
, and
Lage
,
J. L.
,
1996
, “
Amplitude Effect on Convection Induced by Time-Periodic Horizontal Heating
,”
Int. J. Heat Mass Transfer
,
39
(
6
), pp.
1121
1133
.
24.
Antohe
,
B. V.
, and
Lage
,
J. L.
,
1996
, “
Experimental Investigation on Pulsating Horizontal Heating of a Water-Filled Enclosure
,”
ASME J. Heat Transfer
,
118
(
4
), pp.
889
896
.
25.
Lage
,
J. L.
, and
Antohe
,
B. V.
,
1997
,
Convection Resonance and Heat Transfer Enhancement of Periodically Heated Fluid Enclosures
(Transient Convective Heat Transfer),
Begell House
,
New York
, pp.
259
268
.
26.
Antohe
,
B. V.
, and
Lage
,
J. L.
,
1997
, “
The Prandtl Number Effect on the Optimum Heating Frequency of an Enclosure Filled With Fluid or With a Saturated Porous Medium
,”
Int. J. Heat Mass Transfer
,
40
(
6
), pp.
1313
1323
.
27.
Narasimhan
,
A.
, and
Reddy
,
B. V. K.
,
2011
, “
Resonance of Natural Convection Inside a Bidisperse Porous Medium Enclosure
,”
ASME J. Heat Transfer
,
133
(
4
), p.
042601
.
28.
Zargartalebi
,
H.
,
Ghalambaz
,
M.
,
Khanafer
,
K.
, and
Pop
,
I.
,
2017
, “
Unsteady Conjugate Natural Convection in a Porous Cavity Boarded by Two Vertical Finite Thickness Walls
,”
Int. Commun. Heat Mass Transfer
,
81
, pp.
218
228
.
29.
Ren
,
Q.
, and
Chan
,
C. L.
,
2016
, “
Natural Convection With an Array of Solid Obstacles in an Enclosure by Lattice Boltzmann Method on a CUDA Computation Platform
,”
Int. J. Heat Mass Transfer
,
93
, pp.
273
285
.
30.
Kazmierczak
,
M.
, and
Chinoda
,
Z.
,
1992
, “
Buoyancy-Driven Flow in an Enclosure With Time Periodic Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
35
(
6
), pp.
1507
1518
.
31.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Taylor and Francis
, Philadelphia, PA.
32.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
1995
,
An Introduction to Computational Fluid Dynamics
, Longman Scientific and Technical,
Harlow, UK
.
33.
Mirehei
,
S. M.
,
2015
, “
Simulations and Analyses of Natural Convection Inside Heterogeneous Containers Heated by Solar Radiation
,” Ph.D. dissertation, Southern Methodist University, Dallas, TX.
34.
Bejan
,
A.
,
2004
,
Convection Heat Transfer
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.